Flight Dynamics Summary

1. Introduction

In this summary we examine the flight dynamics of aircraft. But before we do that, we must examine
some basic ideas necessary to explore the secrets of flight dynamics.

1.1 Basic concepts

1.1.1 Controlling an airplane

To control an aircraft, control surfaces are generally used. Examples are elevators, flaps and spoilers.
When dealing with control surfaces, we can make a distinction between primary and secondary flight
control surfaces. When primary control surfaces fail, the whole aircraft becomes uncontrollable.
(Examples are elevators, ailerons and rudders.) However, when secondary control surfaces fail, the
aircraft is just a bit harder to control. (Examples are flaps and trim tabs.)

The whole system that is necessary to control the aircraft is called the control system. When a control
system provides direct feedback to the pilot, it is called a reversible system. (For example, when using
a mechanical control system, the pilot feels forces on his stick.) If there is no direct feedback, then we
have an irreversible system. (An example is a fly-by-wire system.)

1.1.2 Making assumptions

In this summary, we want to describe the flight dynamics with equations. This is, however, very difficult.
To simplify it a bit, we have to make some simplifying assumptions. We assume that ...

e There is a flat Earth. (The Earth’s curvature is zero.)
e There is a non-rotating Earth. (No Coriolis accelerations and such are present.)

The aircraft has constant mass.

The aircraft is a rigid body.

e The aircraft is symmetric.

There are no rotating masses, like turbines. (Gyroscopic effects can be ignored.)

There is constant wind. (So we ignore turbulence and gusts.)

1.2 Reference frames

1.2.1 Reference frame types

To describe the position and behavior of an aircraft, we need a reference frame (RF). There are several
reference frames. Which one is most convenient to use depends on the circumstances. We will examine
a few.
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e First let’s examine the inertial reference frame Fj. It is a right-handed orthogonal system. Its
origin A is the center of the Earth. The Z; axis points North. The X; axis points towards the
vernal equinox. The Y7 axis is perpendicular to both the axes. Its direction can be determined
using the right-hand rule.

e In the (normal) Earth-fixed reference frame Ff, the origin O is at an arbitrary location on
the ground. The Zg axis points towards the ground. (It is perpendicular to it.) The Xp axis is
directed North. The Yy axis can again be determined using the right-hand rule.

e The body-fixed reference frame Fj is often used when dealing with aircraft. The origin of the
reference frame is the center of gravity (CG) of the aircraft. The X, axis lies in the symmetry
plane of the aircraft and points forward. The Z, axis also lies in the symmetry plane, but points
downwards. (It is perpendicular to the X}, axis.) The Y, axis can again be determined using the
right-hand rule.

e The stability reference frame Fjg is similar to the body-fixed reference frame Fj. It is rotated
by an angle o, about the Y} axis. To find this «,, we must examine the relative wind vector
Va. We can project this vector onto the plane of symmetry of the aircraft. This projection is then
the direction of the Xg axis. (The Zg axis still lies in the plane of symmetry. Also, the Yy axis is
still equal to the Y} axis.) So, the relative wind vector lies in the XgYs plane. This reference frame
is particularly useful when analyzing flight dynamics.

e The aerodynamic (air-path) reference frame F, is similar to the stability reference frame Fg.
It is rotated by an angle 3, about the Zg axis. This is done, such that the X, axis points in the
direction of the relative wind vector V,. (So the X, axis generally does not lie in the symmetry
plane anymore.) The Z, axis is still equation to the Zg axis. The Y, axis can now be found using
the right-hand rule.

e Finally, there is the vehicle reference frame F,. Contrary to the other systems, this is a left-
handed system. Its origin is a fixed point on the aircraft. The X, axis points to the rear of the
aircraft. The Y. axis points to the left. Finally, the Z,. axis can be found using the left-hand rule.
(It points upward.) This system is often used by the aircraft manufacturer, to denote the position
of parts within the aircraft.

1.2.2 Changing between reference frames

We've got a lot of reference frames. It would be convenient if we could switch from one coordinate system
to another. To do this, we need to rotate reference frame 1, until we wind up with reference frame 2. (We
don’t consider the translation of reference frames here.) When rotating reference frames, Euler angles
¢ come in handy. The Euler angles ¢, ¢, and ¢, denote rotations about the X axis, Y axis and Z axis,
respectively.

We can go from one reference frame to any other reference frame, using at most three Euler angles. An
example transformation is ¢, — ¢, — ¢.. In this transformation, we first rotate about the X axis,
followed by a transformation about the Y axis and the Z axis, respectively. The order of these rotations
is very important. Changing the order will give an entirely different final result.

1.2.3 Transformation matrices

An Euler angle can be represented by a transformation matrix T. To see how this works, we consider
a vector x! in reference frame 1. The matrix To; now calculates the coordinates of the same vector x2
in reference frame 2, according to x2 = Ty x1!.



Let’s suppose we’re only rotating about the X axis. In this case, the transformation matrix Ty is quite
simple. In fact, it is

1 0 0
Ty = |0 cos¢, sing,| . (1.2.1)
0 —sin¢g; cosoy

Similarly, we can rotate about the Y axis and the Z axis. In this case, the transformation matrices are,
respectively,

cospy, 0 —singy cos¢p, sing, 0
To; = 0 1 0 and Ty = [—sin¢g, cos¢, O0Of. (1.2.2)
sing, 0 cos¢y 0 0 1

A sequence of rotations (like ¢, — ¢, — ¢.) is now denoted by a sequence of matrix multiplications
T4 = Ty3T35To,. In this way, a single transformation matrix for the whole sequence can be obtained.

Transformation matrices have interesting properties. They only rotate points. They don’t deform them.
For this reason, the matrix columns are orthogonal. And, because the space is not stretched out either,
these columns must also have length 1. A transformation matrix is thus orthogonal. This implies that

Ty =TI = Ty,. (1.2.3)

1.2.4 Transformation examples

Now let’s consider some actual transformations. Let’s start at the body-fixed reference frame Fy. If we
rotate this frame by an angle o, about the Y axis, we find the stability reference frame Fg. If we then
rotate it by an angle 3, about the Z axis, we get the aerodynamic reference frame F;,. So we can find
that

cosfB, sinf, O cosf, sinf, O cosa, 0 sinag,
x® = |—sinf, cosB, 0|x°=|—sinB, cosB, O 0 1 0 xP. (1.2.4)
0 0 1 0 0 1| |—sina, 0 cosag

By working things out, we can thus find that

cos By cosa, sinf,  cosf,sina,
Te = | —sinfB, cosa, cosB, —sinfsinag| - (1.2.5)

—sin 0 CoS Qg

We can make a similar transformation between the Earth-fixed reference frame Fgr and the body-fixed
reference frame F},. To do this, we first have to rotate over the yaw angle ¢ about the Z axis. We then
rotate over the pitch angle 6 about the Y axis. Finally, we rotate over the roll angle ¢ about the X
axis. If we work things out, we can find that

cos 6 cos v cos @ sin vy —sinf
Ty = |singsinfcosy — cospsiny singsinfsiny + cospcosyy sinpcosh | . (1.2.6)

cospsinfcosy + sinpsiny cospsinfsiny — sinpcosy cospcosb

Now that’s one hell of a matrix ...



1.2.5 Moving reference frames

Let’s examine some point P. This point is described by vector r® in reference frame Fg and by rP in

reference frame Fj,. Also, the origin of F, (with respect to F) is described by the vector rgp. So we
have rE = rgp, + rP.

Now let’s examine the time derivative of r® in Fr. We denote this by d;f

. It is given by
E

L, o
o dt

ar®
dt

- dI‘Eb
L, dt

(1.2.7)

E
Let’s examine the terms in this equation. The middle term of the above equation simply indicates the
movement of Fj, with respect to Fg. The right term is, however, a bit more complicated. It indicates
the change of r® with respect to F. But we usually don’t know this. We only know the change of rP
in Fp. So we need to transform this term from Fg to Fp. Using a slightly difficult derivation, it can be

shown that
drP

p o dt

drP

— + QpE x 1P, (1.2.8)

b

The vector Qg denotes the rotation vector of F}, with respect to Fg. Inserting this relation into the

earlier equation gives us
drP

5 dt

ar®
dt

_ drep + QpE x rP. (1.2.9)
E dt b

This is quite an important relation, so remember it well. By the way, it holds for every vector. So instead
of the position vector r, we could also take the velocity vector V.

Finally, we note some interesting properties of the rotation vector. Given reference frames 1, 2 and 3, we

have
Q12 = —Q2 and Q31 = Q32 + N21. (1.2.10)



2. Deriving the equations of motion

The flight dynamics of an aircraft are described by its equations of motion (EOM). We are going to
derive those equations in this chapter.

2.1 Forces

2.1.1 The basic force equation

To derive the equations of motion of an aircraft, we start by examining forces. Our starting point in
this is Newton’s second law. However, Newton’s second law only holds in an inertial reference system.
Luckily, the assumptions we have made earlier imply that the Earth-fixed reference frame F is inertial.
(However, Fj, is not an inertial reference frame.) So we will derive the equations of motion with respect
to FE

Let’s examine an aircraft. Newton’s second law states that

F:/dF:;lt(/Vpdm), (2.1.1)

where we integrate over the entire body. It can be shown that the right part of this equation equals
%(ng), where V¢ is the velocity of the center of gravity of the aircraft. If the aircraft has a constant
mass, we can rewrite the above equation into

F=mC — nAg. 2.1.2
m—g T mae (2.1.2)

This relation looks very familiar. But it does imply something very important. The acceleration of the
CG of the aircraft does not depend on how the forces are distributed along the aircraft. It only depends
on the magnitude and direction of the forces.

2.1.2 Converting the force equation

There is one slight problem. The above equation holds for the Fp reference frame. But we usually work
in the Fj reference frame. So we need to convert it. To do this, we can use the relation

dVg dVg
Ag=—7" = —7 Qe X Va. 2.1.3
G &t |y |, + {pE G ( )
Inserting this into the above equation will give
U+ qw —rv
dv
F:mTtG +mQpe X Vg =m |0 +7ru—pw| . (2.1.4)
b w~+ pv — qu
By the way, in the above equation, we have used that
U p
VG = |0 and QbE = 1q| - (215)
w r

Here, u, v and w denote the velocity components in X, Y and Z direction, respectively. Similarly, p, ¢
and r denote rotation components about the X, Y and Z axis, respectively.



2.1.3 External forces

Let’s take a look at the forces F our aircraft is subject to. There are two important kinds of forces:
gravity and aerodynamic forces. The gravitational force Fgravity is, in fact, quite simple. It is given by

T
F]garavity = |:0 0 mg:| ) (216)

where ¢ is the gravitational acceleration. The superscript FE indicates that the force is given in
the Fg reference frame. However, we want the force in the F} reference frame. Luckily, we know the
transformation matrix Tpg. We can thus find that

—sinf
Fgra‘,ity = TbEF}gEravity =mg |sinpcosb | . (2.1.7)
cos p cos 0

The aerodynamic forces Faero are, however, a lot more difficult. For now, we won’t examine them in
depth. Instead, we simply say that

T
F';em:[xb yb zv| . (2.1.8)

By combining this knowledge with the equation of motion for forces, we find that

U+ quw —rv —sind Xb
m |9+ ru—pw| =mg |sinpcosf | + [ Y. (2.1.9)
w—+ pv — qu cos p cos 6 A

2.2 Moments

2.2.1 Angular momentum

Before we’re going to look at moments, we will first examine angular momentum. The angular mo-
mentum of an aircraft Bg (with respect to the CQG) is defined as

Bg = /dBG =r x Vpdm, (2.2.1)
where we integrate over every point P in the aircraft. We can substitute

dr
Vp=Vg+ —

Q . 2.2.2
L + Qpe X T ( )

b

If we insert this, and do a lot of working out, we can eventually find that
BG = HGQbE~ (223)

The parameter I is the inertia tensor, with respect to the CG. It is defined as

I, —Juy —Ju f(rf, +7r2)dm = [(ryry)dm  — [(ryr.)dm
Ig=|-Jo I, —Jdy|=|—[(rary)dm [(rZ+72)dm — [(ryr.)dm | . (2.2.4)
7<]acz 7Jyz Iz - f(rxrz)dm - f(ryrz)dm f(rgr + T?;)dm

We have assumed that the X Z-plane of the aircraft is a plane of symmetry. For this reason, J;, = J,, = 0.
This simplifies the inertia tensor a bit.



2.2.2 The moment equation

It is now time to look at moments. We again do this from the inertial reference frame Fr. The moment
acting on our aircraft, with respect to its CG, is given by

MG:/dMG:/rxdF:/rxw, (2.2.5)

where we integrate over the entire body. Luckily, we can simplify the above relation to

_ dBg

Mg = —= 2.2.
a= (226)

E
The above relation only holds for inertial reference frames, such as Fr. However, we want to have the
above relation in F}. So we rewrite it to

dBg

M:
“7 at |,

+ Qe X Ba. (2.2.7)

By using Bg = [QpE, we can continue to rewrite the above equation. We eventually wind up with

dQuE

Me = Ie—
b

+ Qpe X I QbE. (228)

In matrix-form, this equation can be written as
pr + (Iz - Iy)qr - Jacz(pq + T)

Mg = Iyq + (Iﬂc - Iz)pr + sz(p2 - 7"2) . (229)
Li+ (Iy — I)pq + Joz(qr — p)

Note that we have used the fact that J,y = J,, = 0.

2.2.3 External moments

Let’s take a closer look at Mg. Again, we can distinguish two types of moments, acting on our aircraft.
There are moments caused by gravity, and moments caused by aerodynamic forces. Luckily, the moments
caused by gravity are zero. (The resultant gravitational force acts in the CG.) So we only need to consider
the moments caused by aerodynamic forces. We denote those as

T
M@ aero = [L M N} : (2.2.10)

This turns the moment equation into
Iyq + (Il - Iz)pT + Jzz(pQ - TQ) = [M|. (2211)

2.3 Kinematic relations

2.3.1 Translational kinematics

Now that we have the force and moment equations, we only need to find the kinematic relations for our
aircraft. First, we examine translational kinematics. This concerns the velocity of the CG of the aircraft
with respect to the ground.



The velocity of the CG, with respect to the ground, is called the kinematic velocity V. In the Fg
reference system, it is described by

T
Vi= |V Vi —VZ} . (2.3.1)

In this equation, Vi is the velocity component in the Northward direction, Vg is the velocity component
in the eastward direction, and —V7 is the vertical velocity component. (The minus sign is present because,
in the Earth-fixed reference system, V is defined to be positive downward.)

However, in the F} reference system, the velocity of the CG, with respect to the ground, is given by
T
Vo=[u v w| . (2.3.2)
To relate those two vectors to each other, we need a transformation matrix. This gives us
Vi =Tg Vg = TigVa. (2.3.3)

This is the translational kinematic relation. We can use it to derive the change of the aircraft position.
To do that, we simply have to integrate the velocities. We thus have

a:(t):/o Vi dt, y(t):/o Vidt  and h(t):/o vy dt. (2.3.4)

2.3.2 Rotational kinematics

Now let’s examine rotational kinematics. This concerns the rotation of the aircraft. In the Fg reference
system, the rotational velocity is described by the variables ¢, 6 and 1/} However, in the Fj reference
system, the rotational velocity is described by p, ¢ and r. The relation between these two triples can be
shown to be

P 1 0 —sind %)
q| =10 cosp cosfsing| [0]. (2.3.5)
r 0 —sing cosfcosep| |

This is the rotational kinematic relation. It is interesting to note that, if p = 6 = ¢ = 0, then p = ¢,
q = 0 and r = 1. By the way, we can also invert the above relation. We would then get

%) 1 sinptanf cosptand | p
o= 1o cos —siny q| - (2.3.6)
0 0 sing/cosf cosp/cosb| |r



3. Rewriting the equations of motion

The equations of motion are quite difficult to deal with. To get some useful data out of them, we need
to make them a bit simpler. For that, we first linearize them. We then simplify them. And after that,
we set them in a non-dimensional form.

3.1 Linearization

3.1.1 The idea behind linearization

Let’s suppose we have some non-linear function f(X). Here, X is the state of the system. It contains
several state variables. To linearize f(X), we should use a multi-dimensional Taylor expansion. We
then get

F(X) = f(Xo) + fx; Xo)AX1 + fx,(Xo)AXo+...... + fx, (Xo)AX, + higher order terms. (3.1.1)

Here, Xg is the initial point about which we linearize the system. The linearization will only be valid
close to this point. Also, the term AX; indicates the deviation of variable X; from the initial point Xg.

When applying linearization, we always neglect higher order terms. This significantly simplifies the
equation. (Although it’s still quite big.)
3.1.2 Linearizing the states

Now let’s apply linearization to the force and moment equations. We start at the right side: the states.
We know from the previous chapter that

F, = m(t+qw—rv), (3.1.2)
F, = m(+ru—pw), (3.1.3)
FE, = m(w+pv—qu). (3.1.4)

So we see that F,, = f(u,q,w,r,v). The state vector now consists of five states. By applying linearization,
we find that

F, = m(ug+ gowo — rovg) + m(At 4+ goAw + weAg — roAv — voAr), (3.1.5)
F, = m(vo+ rouo — powo) + m(A0 4+ roAu + ugAr — ppAw — weAp), (3.1.6)
F, = m(uwg+ povo — qoug) + m(Aw + poAv + voAp — goAu — ugAq). (3.1.7)

We can apply a similar trick for the moments. This would, however, give us quite big expressions. And
since we don’t want to spoil too much paper (safe the rainforests!), we will not derive those here. Instead,
we will only examine the final result in the end.

3.1.3 Linearizing the forces

Now let’s try to linearize the forces. Again, we know from the previous chapter that

F, = —Wsinf+ X, (3.1.8)
F, = Wsinycosf+Y, (3.1.9)
F, = Wcostcosb+ Z, (3.1.10)



where the weight W = mg. We see that this time F, = f(6,X). Also, F, = f(¢,0,Y) and Fy =
f(,0,7). Tt may seem that linearization is easy this time. However, there are some problems.

The problems are the forces X, Y and Z. They are not part of the state of the aircraft. Instead they
also depend on the state of the aircraft. And they don’t only depend on the current state, but on the
entire history of states! (For example, a change in angle of attack could create disturbances at the wing.
These disturbances will later result in forces acting on the tail of the aircraft.)

How do we put this into equations? Well, we say that X is not only a function of the velocity u, but
also of all its derivatives 4,1, .... And the same goes for v, w, p, ¢ and r. This gives us an infinitely
big equation. (Great....) But luckily, experience has shown that we can neglect most of these time
derivatives, as they aren’t very important. There are only four exceptions. © strongly influences the
variables Y and N. Also, w strongly influences Z and M. We therefore say that

Fx = f(a’ X) Wlth X = f(u’ ,U’ w7p7 q) T} 5&)58767")5t)7 (3'1'11)
Fy = f(¢;97Y) with Y = f(u,’U,’LU, /l.}apyqara 6(1& 667 67")? (3112)
F,=f(4,0,2) with Z = f(u,v,w,W,p,q, 7, 0q,0c,0r,0t). (3.1.13)

When creating the Taylor expansion, we have to apply the chain rule. We then find that

Fo(X) =~ Fy(Xo)—WecosOgAb+ X, Au+ X, Av+ Xy Aw + X,Ap+ ...+ X5,A0;, (3.1.14)
(X) = Fy(Xo)— WsintysinfgAf + W costhg cos oAy + Y, Av + ... + Y5 Ad,,  (3.1.15)
F.(X) = F,(Xo)— W costygsinfgAf — W sintpg cos 0gAY + Zy A + ... + Zs, Ady. (3.1.16)

Now that’s one big Taylor expansion. And we haven’t even written down all terms of the equation.
(Note the dots in the equation.) By the way, the term X, indicates the derivative 0X/Ou. Similarly,
X, = 0X/0v, and so on.

You may wonder what d,, d., 6, and &; are. Those are the settings of the aileron, elevator, rudder
and thrust. These settings of course influence the forces acting on the aircraft. We will examine those
coefficients later in more detail. (You may also wonder, why doesn’t Y depend on the thrust setting d;?
This is because we assume that the direction of the thrust vector lies in the plane of symmetry.)

3.2 Simplification

3.2.1 Symmetry and asymmetry

Let’s try to simplify that monstrocity of an equation of the previous part. To do that, we have to apply
several tricks. The most important one, is that of symmetry and asymmetry.

We can make a distinction between symmetric and asymmetric forces/deviations. The symmetric devia-
tions (the deviations which don’t break the symmetry) are u, w and g. The symmetric forces/moments
are X, Z and M. Similarly, the asymmetric deviations are v, p and r. The asymmetric forces/moments
are Y, L and N.

It can now be shown that there is no coupling between the symmetric and the asymmetric properties.
(That is, as long as the deviations are small.) In other words, X is uneffected by v, p and r. Thus
X, = X, = X, = 0. The same trick works for the other forces and moments as well. This causes a lot
of terms to disappear in the force equations.

10



3.2.2 Simplifying the force equations

There is also another important trick we use, when simplifying the force equations. We assume that the
aircraft is flying in a steady symmetric flight. This means that

up#0 =0 po=0 po=0 ¢o=0 @=0 Xo#0 Xo=0,
U():O U():O qo:() q():O 907&0 9020 Y():O }/():O7 (321)
wo£0 wo=0 rg=0 70=0 tg#£0 thg=0 Zo#0 Zy=0.

This greatly simplifies the Fy(Xo), Fy(Xo) and F,(Xo) terms.

Now it is finally time to apply all these simplifications and tricks. It will give us the force equations for
small deviations from a steady symmetric flight. These equations are

—Wcosbpb + Xu+ Xypw + Xgq + X5, 0e + X5,00 = m(d+ woq), (3.2.2)
Weosbop + Y, + Y0+ Yop 4+ Yor + Y5, 00 + Y50, = m(0+ upr — wop), (3.2.3)
—Wsin6ob + Zyu + Zyw + Zyw + Zgq + Z5,6c + Z5,00. = m(w — uoq). (3.2.4)

Of these three equations, the first and the third correspond to symmetric motion. The second equation
corresponds to asymmetric motion.

You may wonder, where did all the A’s go to? Well, to simplify our notation, we omitted them. So in
the above equation, all variables indicate the displacement from the initial position Xg.

Finally, there is one more small simplification we could do. We haven’t fully defined our reference system
yet. (We haven’t specified where the X axis is in the symmetry plane.) Now let’s choose our reference
system. The most convenient choice is in this case the stability reference frame Fg. By choosing this
frame, we have ugp = V and wy = 0. (V is the velocity.) This eliminates one more term.

3.2.3 The moment equations

In a similar way, we can linearize and simplify the moment equations. We won’t go through that tedious
process. By now you should more or less know how linearization is done. We’ll just mention the results.
They are

L,v+ Lyp+ Lyr+ L5, 0o + L5, 6r = Ipp— Jy.7, (3.2.5)
Myu+ Myw + Myw + Mgq + Ms, 0. + Ms, 0, = Iy, (3.2.6)
Nyv + Nyi + Npyp + Ny + N5, 64 + N5, 8, = L1 — Ju.p. (3.2.7)

Of these three equations, only the second one corresponds to symmetric motion. The other two correspond
to asymmetric motion.

3.2.4 The kinematic relations

The kinematic relations can also be linearized. (This is, in fact, not that difficult.) After we apply the
simplifications, we wind up with

p = p+rtanby, (3.2.8)
0 = q, (3.2.9)
. r

= . 2.1
¥ cos by (3.2.10)

Of these three equations, only the second one corresponds to symmetric motion. The other two correspond
to asymmetric motion.
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3.3 Setting the equations in a non-dimensional form

3.3.1 The dividing term

Aerospace engineers often like to work with non-dimensional coefficients. By doing this, they can easily
compare aircraft of different size and weight. So, we will also try to make our equations non-dimensional.
But how do we do that? We simply divide the equations by a certain value, making them non-dimensional.

The question remains, by what do we divide them? Well, we divide the force equations by % pV?2S, the
symmetric moment equation by %pVQSE7 the asymmetric moment equations by %pVQSb, the symmetric
kinematic equation by V/¢ and the asymmetric kinematic equations by V/b. Here, S is the wing surface
area, ¢ is the mean chord length, and b is the wing span. (Note that we use ¢ for symmetric equations,
while we use b for asymmetric equations.)

3.3.2 Defining coefficients

Dividing our equations by a big term won’t make them look prettier. To make them still readable, we
need to define some coefficients. To see how we do that, we consider the term X, u. We have divided this
term by %pVQS . We can now rewrite this term to

Xyu Xy u

1pV28 1oV SV

In this equation, we have defined the non-dimensional velocity 4. There is also the coefficient Cx, =
Xu/(%pVS). This coefficient is called a stability derivative.

Cx, . (3.3.1)

We can apply the same trick to other terms as well. For example, we can rewrite the term X, w to
Xpw Xy w
$pV2S  LpvsSV

= Cx,a, (3.3.2)

where the angle of attack « is approximated by o = w/V. We can also rewrite the term X,q to

Xeq X, cdb

$pV2S  Lpv2SeV o di

This time we don’t only see a new coefficient. There is also the differential operator D.. Another
differential operator is Dy. D, and D, are defined as

¢ d b d

= —=— d Dy=—=—.

“va ™ PTVa

In this way, a lot of coefficients can be defined. We won’t state the definitions of all the coefficients here.

(There are simply too many for a summary.) But you probably can guess the meaning of most of them
by now. And you simply have to look up the others.

= Cx,D.H. (3.3.3)

(3.3.4)

3.3.3 The equations of motion in matrix form

So, we could now write down a new set of equations, with a lot of coefficients. However, we know that
these equations are linear. So, we can put them in a matrix form. If we do that, we will find two
interesting matrix equations. The equations for the symmetric motion are given by

CXu — 2/LCDC CXQ CZO Cxq U —Cx{se OXét
Cz, Cz,+(Cz, —2u.)D. —Cx, 2pe + Cgz, al | =Cgz,, Czs, | |0
0 0 -D, 1 0| | o 0 [@1
Co., Cpm. + Crs D 0 Cm, —2uKiD:] | % Crs,  —Chms,
(3.3.5)
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You may note that, instead of using the subscript M, we use the subscript m. This is just a writing

convention. You also haven’t seen the variable K% yet. It is defined as K2 = "{22 Also, p. = o5
The equations for the asymmetric motion are given by
Cy, + (CYB —2up)Dy Cy Cy, Cy, — 4 3 —Cy;, —Cy;,
0 —3Dy 1 0 el | 0 0 b4
Cis 0 C, —4mK%Dy  C, +4uwKxzDy| | 2| |-Ci,, —Ci, [&]
Onﬁ + CnBDb 0 Cnp +4wKxzDy C, — 4,LL(,K%D(, % _Cnsa _Cns,.
(3.3.6)

Again, note that, instead of using the subscripts L and N, we have used [ and n. Also, the slip angle (3
is defined as § = v/V.

3.3.4 Equations of motion in state-space form
We can also put our equation in state-space form, being
%X = Ax + Bu and y = Cx+ Du. (3.3.7)

Here, A is the state matrix, B is the input matrix, C is the output matrix and D is the direct
matrix. Since the system is time-invariant, all these matrices are constant. Also, x is the state vector,
u is the input vector and y is the output vector.

The state-space form has several advantages. First of all, the parameters can be solved for at every
time ¢. (The complicated equations for this are known.) Second, computers are very good at performing
simulations, once a situation has been described in state-space form.

After some interesting matrix manipulation, the state-space form of the symmetric motions can be derived.
The result is

i Tu ZTa o O U T5, T,

Gl _ |2 Za 2 EA I Dl I ] | (3.3.8)
6 0 0 o Y||e 0 0|

% My Mo My My % ms, Mg,

There are quite some strange new coefficients in this equation. The equations, with which these coefficients
are calculated, can be looked up. However, we will not mention those here.

You may notice that, in the above equation, we only have the state matrix A and the input matrix B.
The matrices C' and D are not present. That is because they depend on what output you want to get
out of your system. So we can’t generally give them here. They are often quite trivial though.

Similarly, the state-space form of the asymmetric motions can be found. This time we have

B Ys Yo Yp Yr ﬁ 0 Ys,.

v 0o 0 2 0 © 0 0] |da

A e A S P R (3.3.9)
2.7‘/ B D r 2V da O r

% ng 0 ny ny ng ns, Ns,

And that concludes this collection of oversized equations.
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4. The aerodynamic center

In this chapter, we’re going to focus on the aerodynamic center, and its effect on the moment coefficient
C.

4.1 Force and moment coefficients

4.1.1 Aerodynamic forces

Let’s investigate a wing. This wing is subject to a pressure distribution. We can sum up this entire
pressure distribution. This gives us a resultant aerodynamic force vector Cg.

Figure 4.1: The forces and moments acting on a wing.

Let’s split up the aerodynamic force vector Cgr. We can do this in multiple ways. We can split the force
up into a (dimensionless) normal force coefficient Cy and a tangential force coefficient Cr. We
can also split it up into a lift force coefficient C and a drag force coefficient C'p. Both methods
are displayed in figure 4.1. The relation between the four force coefficients is given by

Cny = Crcosa+Cpsina, (411

[\
— —

Cr = Cpcosa—Cprsina.

The coefficients C,, Cn, Cr and Cp all vary with the angle of attack a. So if the angle of attack changes,
so do those coeflicients.

4.1.2 The aerodynamic moment

Next to the aerodynamic forces, we also have an aerodynamic moment coefficient C,,,. This moment
depends on the reference position. Let’s suppose we know the moment coefficient Cy, about some

(z1,21)
point (21, 2z1). The moment coefficient Cm(12 ) about some other point (z3, 2z2) can now be found using

T2 — T1 22 — 21

Cinay ey T ON

—Cr

- - (4.1.3)

M(ag,29)
Here, ¢ is the mean aerodynamic chord length. (The mean aerodynamic chord (MAC) can be
seen as the ‘average’ chord of the entire 3D wing.) Also, z and z denote the position of the reference

point in the vehicle reference frame F,.. We define (xq, 20) to be the position of the leading edge of the
MAC.
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4.2 Important points of the wing

4.2.1 The center of pressure

Let’s put our reference point (z,z) (for calculating C,,) on the chord. (We thus set z = 2p.) There now
is a certain value of z, for which C,, = 0. This point is called the center of pressure (CP). We denote
its coordinates by (24, z0). (The CP is the point where the line of action of Cg crosses the chord.)

Let’s suppose that we know the moment coefficient C,, about the leading edge. We can then find

(0,20)

T4 using
Tqg — Xo
Coniayogy = 0= Cimiy gy + ONT—— (4.2.1)
Let’s define e = x4 — xp. We can then find that
€ (7”1(10 z0)
2T T T o 4.2.2
¢ Cx (42.2)

4.2.2 Lines and metacenters

Let’s examine a wing at a certain angle of attack «. This wing is subjected to a resultant force Cr. For
all points on the line of action of Cr, we have C,, = 0.

Now let’s examine all points for which dC,,/da = 0. These points also lie on one line. This line is called
the neutral line. The point where this line crosses the MAC (and thus z = zp) is called the neutral
point. The crossing point of the neutral line and the line of action of Cg is called the first metacenter
M;. This point has both C,, =0 and dC,,/da = 0.

Let’s take another look at the neutral line. On this line is a point for which d>C,,, /da? = 0. This point
is called the second metacenter.

It is important to remember that all the lines and points discussed above change as a changes. However,
the second metacenter changes only very little. We therefore assume that its position is constant for
different angles of attack a.

4.2.3 The aerodynamic center

Previously, we have defined the second metacenter. However, in aerodynamics, we usually refer to this
point as the aerodynamic center (AC). Its coordinates are denoted by (Z4c, zac). The corresponding
moment coefficient is written as C,,,.. We know that we have dC,,,, /da = 0 and d*C,,,, /da® = 0. We
can use this to find x4, and z,..

To find x4. and z,., we have to differentiate equation (4.1.3) with respect to «. Differentiating it once
gives
dCp,, 0=
dae da da c da c
(Note that we have used the fact that the position of the AC doesn’t vary with «.) Differentiating it
twice gives

AdCrmys o) n dCON Tac — @9 dCr Zac — 0

(4.2.3)

d*C,,. 0= d2Cm(m0,z0) d*Cn 4. — 0 ~ d*Cr Zge — 20
da? da? da? c da? c

We now have two equations and two unknowns. We can thus solve for x,. and z,.. After this, it is easy

to find the corresponding moment coefficient Cy,,.. And since dC,,./do = 0, we know that this moment

coeflicient stays the same, even if « varies.

(4.2.4)

We have just described an analytical method to find the AC. There are also graphical methods to find
the AC. We won’t go into detail on those methods though.
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4.2.4 Simplifications

We can make a couple of simplifications. Usually, dCr/da is rather small compared to dCx/da. We
therefore often neglect the effects of the tangential force coefficient Cp. If we do this, we find that the
AC lies on the MAC (z4c = 20). In fact, the AC coincides with the neutral point.

Finding the position of the AC has now become a lot easier. We know that z,. = zg. We can use this to

show that x,. satisfies
Tac — 0 _ _dcm(mo,zo) (4 9 5)
c dCy -
Once x4 has been determined, we can find the moment coefficient about any other point on the wing.
Based on our simplifications, we have

X — Tge

Cm(z) = Cp,, +CnN (4.2.6)
We can also see another interesting fact from this equation. If Cy = 0, the moment coefficient is constant
along the wing. And the value of this moment coefficient is equal to Cy,,.. In other words, the value of
Cin,. is the value of Cy,, when Cy = 0. (This rule holds for every reference point.)

4.3 Static stability

4.3.1 Stability types

Let’s suppose that the aircraft is performing a steady flight. The aircraft is then in equilibrium. This
means that the moment coefficient about the center of gravity (CG) must be 0. (Cp,., = 0.) Now let’s
suppose that the aircraft gets a small deviation from this steady flight. For example, « increases to
a + da. What happens?

Due to the change in angle of attack, Cy,,, is no longer zero. Instead, it will get a value of dC,,,,. We
can now distinguish three cases.

e The change in moment dC,,, is in the same direction as da. We thus have dC,,_, /do > 0. In this
case, the moment causes « to diverge away from the equilibrium position. The aircraft is therefore
unstable.

e The change in moment dC,,, , is directed oppositely to da. We now have dC,,,,/da < 0. In this
case, the moment causes « to get back to its equilibrium position. The aircraft is thus stable.

e The change in moment dC,, , = 0, and thus also dC,,_,/da = 0. In this case, we are in a new
equilibrium position. This situation is called neutrally stable or indifferent.

4.3.2 The position of the center of gravity

We just saw that, to have a stable aircraft, we should have dC,,_, /da < 0. It turns out that the position

of the CG is very important for this. To see why, we differentiate equation (4.2.6) with respect to a. We
find that

decg _ dCN Teg — Lac

da  da c

In general, dCn/da > 0. So, to have a stable aircraft, we must have z.; — 4. < 0. The aerodynamic
center should thus be more to the rear of the aircraft than the CG. (This is also why airplanes have a
stabilizing horizontal tailplane: It moves the aerodynamic center to the rear.)

(4.3.1)
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4.4 Three-dimensional wings

4.4.1 Basic and additional lift distributions

Previously, we have only examined 2D wings. We will now examine a 3D wing. The wing has a wing
span b. Also, at every point y, the 2D airfoil has its own chord ¢(y) and lift coefficient ¢;(y, ). It also has
a contribution to the lift. By summing up all these lift contributions, we can find the total lift coefficient
Cp, of the wing. This goes according to

L v L o bz c(y)
CLipV S = 2/ cl(y)ﬁpV c(y) dy = Cr = 2/ cl(y)?dy. (4.4.1)
0 0

Note that we have used that S = be. We also have used the assumption that the wing is symmetric, by
integrating over only one half of the wing.

We can split the lift coefficient distribution ¢;(y,«) up into two parts. First, there is the basic lift
distribution ¢, (y). This is the lift distribution corresponding to the zero-lift angle of attack a¢, —¢.
(So ¢, (y) = a(y, ac,=o0).) Per definition, we thus have

b/2 .
2/ a, (y) %y) dy = 0. (4.4.2)

0

Second, there is the additional lift distribution ¢, (y,«). This lift distribution takes into account
changes in «.. It is defined as ¢, (y, @) = ¢1(y, @) —¢y, (y). So, if we have @ = @, —o, then ¢, (y, ac,—0) =0
for all y.

4.4.2 The aerodynamic center of a 3D wing

You may wonder, what is the use of splitting up the lift distribution? Well, it can be shown that the
position of the aerodynamic center of the entire wing Z,. only depends on ¢;,. In fact, we have

ZTac — To 1 2 /b/2 _
—_— = , — Zo) dy. 4.4.3
- cise ), o (Y, @) c(y) (Tac(y) — To) dy (4.4.3)
It is important to note the difference between all the x’s. x4, is the position of the AC of the 2D airfoil.
Tac 1s the position of the AC of the entire 3D wing. Finally, Z is the position of the leading edge of the
MAC. By the way, the above equation only holds for reasonable taper and wing twist angles. For very
tapered/twisted wings, the above equation loses its accuracy.

Now let’s examine the moment coefficient of the entire wing. This moment coefficient only depends on
the moment coeflicients c,,,, and the basic lift distribution ¢;, of the individual airfoils. In fact, it can
be shown that

9 b/2 ) b/2 )
Crmae = g7 (/0 Cma. (y) c(y)” dy —/0 e, (y) c(y) (Tac(y) — xo)dy> . (4.4.4)

4.4.3 Effects of the 3D wing shape

Let’s investigate how the wing shape effects Z,. and C,,,,. There are several properties that we can give
to our 3D wing.

e A cambered airfoil. Camber causes the value ¢,,,, of the individual airfoils to become more
negative. So C,,, . also becomes more negative. Z,. doesn’t really change.

Nac
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A swept wing. When dealing with swept wings, the term (x,.(y) — Zo) becomes important. Wings
with high sweep angles A tend to have a shifting AC at high angles of attack. Whether this
improves the stability or not depends on other parameters as well.

A tapered wing. The taper ratio A\ = ¢;/c¢, (the ratio of the tip chord and the root chord) slightly
influences stability. For swept back wings, a low taper ratio tends to have a stabilizing influence.

A slender wing. The aspect ratio A has only little influence on the position of the AC. However,
a slender wing (high A) with a large sweep angle A will become unstable at large angles of attack.

A twisted wing. Applying a wing twist angle ¢ causes the basic lift distribution ¢;, to change.
This causes Cp,,, to change as well. In what way C,,,. changes, depends on the direction of the
wing twist.

Predicting the exact behaviour of the wing is, however, rather difficult. A lot of parameters influence the
wing behaviour. So don’t be surprised if the above rules don’t always hold.
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5. Examining an entire aircraft

In the previous chapter, we’'ve only considered the wing of an aircraft. Now we’re going to add the rest
of the aircraft too. How do the various components of the aircraft influence each other?

5.1 Adding a fuselage

5.1.1 Changes in moment coefficient

Previously, we have only considered a wing. This wing had a moment coefficient C,,,,. Now let’s add a
fuselage. The combination of wing and fuselage has a moment coefficient Cy,,,,. The change in moment
coefficient AC,,, is now defined such that

me‘f = me + AC’H’L (511)

Let’s take a closer look at this change AC,,. What does it consist of 7 We know that a fuselage in a flow
usually has a moment coefficient C,,,. However, the wing causes the flow around the fuselage to change.
This also causes a moment coefficient induced on the fuselage, denoted by AC,,,,. Finally, the fuselage
effects the flow around the wing. There is thus also a factor AC,,,,,. We thus have

ACy, = Crny + ACh,,, + ACh,,,. (5.1.2)

In this equation, the coefficients C,,,, and AC,,,, are usually considered together as Cy, ., .

nf

5.1.2 Effects of the fuselage

We can use inviscid incompressible flow theory to examine the fuselage. We then find that the moment
coeflicient of the fuselage, in the induced velocity field, is

™

Ly
Cmy; = Cm; +ACH,, = 2—%/0 br(z)? af(z)de. (5.1.3)

Here, b¢(x) is the fuselage width and ay(z) is the (effective) fuselage angle of attack. We also
integrate over the entire length [; of the fuselage.

If there was only a fuselage (and no wing), then the fuselage would have a constant angle of attack.
However, the wing causes the angle of attack to vary. In front of the wing, the flow goes up a bit. Behind
the wing, there is a downwash. To deal with these complicated effects, we apply linearization. We thus

approximate o (x) as
da(x)

ar(z) :afo—l—w(a—ao). (5.1.4)

Here, g is the zero normal force angle of attack ac,—o. ay, is the corresponding fuselage angle of
attack. By using the above equation, we can find a relation for C,,,,. We get

ly _ ly
T fo 2 m(a — o) / o doy(x)
Cm,p = =22 b doe + ———— b ———=dz. 5.1.5
5.1.3 The shift of the aerodynamic center
Adding the fuselage causes the aerodynamic center to shift. We know that
— N T — Tqgc
Ciny = Oy + Oy =2 and Cryy = Oy + Oy ——22L (5.1.6)
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Let’s assume that adding the fuselage doesn’t effect the normal force. Thus Cy,, = Cy,,, = Cn. In this
case, we have

ACyp = Cpoy = Cony = ACyy — ON% (5.1.7)

We can differentiate this equation with respect to a. From the definition of the AC follows that
d(AC,,.)/da = 0. If we then also use the fact that dCy/da = Cy,, we find that

macwf - (Eacw Al‘ac 1 d(ACm>
= == . 5.1.8
¢ z Cn. da (5.1.8)

a

Part of this shift is caused by the fuselage, while the other part is caused by the new flow on the wing.
The shift in angle of attack, due to the fuselage, is

dCon,, b
(A%C> — o by ()2 221 gy, (5.1.9)
fi 0

C N, do - Ch, 2S¢ do

The shift due to the flow induced on the wing is denoted by (%)wi. We don’t have a clear equation for
this part of the shift. However, it is important to remember that this shift is only significant for swept

wings. If there is a positive sweep angle, then the AC moves backward.

5.2 Adding the rest of the aircraft

5.2.1 The three parts

It is now time to examine an entire aircraft. The CG of this aircraft is positioned at (xcq, 2¢q). We split
this aircraft up into three parts.

e First, there is the wing, with attached fuselage and nacelles. The position of the AC of this part is
(Zw, Zw). Two forces and one moment are acting in this AC. There are a normal force N, (directed
upward), a tangential force T, (directed to the rear) and a moment M, .

e Second, we have a horizontal tailplane. The AC of this part is at (z, z5). In it are acting a normal
force Ny, a tangential force 7} and a moment M, .

e Third, there is the propulsion unit. Contrary to the other two parts, this part has no moment. It
does have a normal force N,, and a tangential force T,,. However, these forces are all tilted upward
by the thrust inclination i,. (So they have different directions then the force T,,, T}, N, and
Ny.) Also, the tangential force T), is defined to be positive when directed forward. (This is contrary
to the forces T}, and T, which are positive when directed backward.)

5.2.2 The equations of motion

We will now derive the equations of motion for this simplified aircraft. We assume that the aircraft is in
a fully symmetric flight. We then only need to consider three equations of motion. Taking the sum of
forces in X direction gives

T =T+ Ty —Tpcosi, + Npsini, = —Wsin 6. (5.2.1)

Similarly, we can take the sum of forces in Z direction, and the sum of moments about the CG. (This is
done about the Y axis.) We then get

N = Ny + Nj + Npcosi, + Ty sini, = Wcos#, (5.2.2)
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M =Mge,, + Noy(xeg — Tw) — Tw(2eg — 2w) + Mac, + Ni(xeg — ) — Th(2eg — 21) + - - -
oo+ (Npcosiy + Tpsiniy)(zeg — xp) + (T cosi, — Npsinip)(zeg — 2p) = 0. (5.2.3)

We can simplify these equations, by making a couple of assumptions. We want to examine the stability of
the aircraft. The propulsion doesn’t influence the stability of the aircraft much. So we neglect propulsion
effects. We also neglect T}, since it is very small compared to T,,. We assume that (z.y — z,) =~ 0. And
finally, we neglect M,.,. This gives us

T =T, =—Wsiné, (5.2.4)
N = N, + N, = Wcos#, (5.2.5)
M = Mye, + Ny(2eg — To) + Np(zeg — xp) = 0. (5.2.6)

That simplifies matters greatly.

5.2.3 Non-dimensionalizing the equations of motion

Let’s non-dimensionalize the equations of motion of the previous paragraph. For that, we divide the force
equations by %pVQS and the moment equation by %pV2SE. This then gives us

w
Cr=Cr, = _%pw sin 6, (5.2.7)
Vi \? Su W
CN = CNw + CN;,, (V) ? = W COS 9, (528)
2
Teg — Ty Vi)~ Shln
'm = Cm, — — — — =0. 2.
C C acw T CNw z CNh, <V) Sz 0 (5 9)
A lot of new coefficients have suddenly disappeared. These coefficients are defined, such that
1 1 1
N = CNiszS, T = CTipVQS, M = Cm§pV255, (5.2.10)
1 1 5 1 5
Ny = CNw§PV S, Ty = CTw§PV S, Mae,, = Cm,., 5,0\/ Se, (5.2.11)
1 5 1 5 1 5. _
N, =Cn, ipVh Sh, T, =Crp, ipVh Sh, Mae, = Cmauh §pVh Shech.- (5.2.12)

Here, % pV;? is the average local dynamic pressure on the horizontal tail plain. Also, Sy, is the tailplane

surface area and ¢, is the MAC of the tailplane. The quantity Sgla’l is known as the tailplane volume.

And finally, we have defined the tail length I}, = x, — z, = @), — Zcg.

5.3 The horizontal tailplane

5.3.1 Important angles

We will now take a closer look at the horizontal tailplane. There are three parameters that describe
the configuration of the horizontal tailplane. These parameters are the effective horizontal tailplane
angle of attack «y,, the elevator deflection . and the elevator trim tab deflection §; . The three
angles are visualized in figure 5.1.

There is one angle which we will examine more closely now. And that is the effective angle of attack ay,.
It is different from the angle of attack of the aircraft a. There are two important causes for this. First,
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Figure 5.1: The angles of the horizontal tailplane.

the horizontal tail plane has an incidence angle ij, relative to the MAC of the wing. And second, the
tailplane experiences downwash, caused by the wing of the aircraft. The average downwash angle is
denoted by . By putting this all together, we find that

ap =a+ 1, — €. (5.3.1)
We can elaborate a bit further on this. The downwash & mainly depends on «. Linearization thus gives
e~ % (a — ). It follows that
de .
ap=1-—— ) (a—ag) + (g +in). (5.3.2)
da
From this follows that the derivate day,/da is given by
dah de
- =2 5.3.3
da do ( )

This derivative is thus generally smaller than 1.

5.3.2 The horizontal tailplane normal force

Let’s examine the normal force C;, of the horizontal tailplane. This is a function of the three angles «ay,
0. and d;,. Applying linearization gives

0N oy 4 O | O s

Chn, = CNhO + Do, 95, 5.,

(5.3.4)

The effect of the trim tab to the normal force is usually negligible. So, dCh;,, /0de, =~ 0. Also, since most
horizontal tailplanes are (nearly) symmetric, we have CNh,O ~ (0. This simplifies the above equation to

80Nh ap + a;sNh 5e = CN;LQ Qp + C’Nh(; 56. (5.3.5)

Cn, =
h
' Oay, .

Note that we have used a shorter notation in the right part of the above equation. The variables C,
and C N, are quite important for the balance of the control surface. If they are both negative, then the

control surface is called aerodynamically underbalanced. If, however, they are both positive, then
the control surface is called aerodynamically overbalanced.

5.3.3 The elevator deflection necessary for equilibrium

We can ask ourselves, what elevator deflection §, should we have, to make sure our aircraft is in equilib-
rium? For that, we examine the moment equation (5.2.9). In this equation are the coefficients Cy,, and
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Ch,, - We can replace these by the linearizations
CNw = C'Nw(1 (Oé — OZ()) and CNh = CNhath +CNh565' (536)

If we do this, we find that

=0. (5.3.7)

Vi 2 Siln
v Se

x — X
Cm = Cmacw + C(N,wa (04 - O10)% - (CN;LQ ap + CN}L5 66) (

We can now also substitute the relation (5.3.2) for ap. Doing this, and working the whole equation out,
gives
Cm = Cmy + Oy, (@ — ag) + Cryy, 6 = 0, (5.3.8)

where Cp,,, is known as the static longitudinal stability and C,,; is the elevator effectivity. To-
gether with the constant C,,,, they are defined as

Crny = Crnoo — Ch,, (a0 + 1) (?}1)2 Sgéh, (5.3.9)
Cm = O, "0 = O, (1 - ;‘;2) (‘3)2 Sgl;, (5.3.10)
Cms, = —Cn,, (‘(})2 Sgléh. (5.3.11)
We can now solve for d.. It is simply given by
5, = — Gmo + Cmala = a0) (5.3.12)

Cms,

This is a nice expression. But do remember that we have made several linearizations to derive this
equation. The above equation is thus only valid, when all the linearizations are allowed.
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6. Longitudinal stability derivatives

We have seen a lot of stability derivatives in previous chapters. However, it would be nice to know
their values. We're therefore going to derive some relations for them. In this chapter, we will look at
longitudinal stability derivatives. In the next chapter, we’ll examine lateral stability derivatives.

6.1 Nominal stability derivatives

6.1.1 Methods of finding the stability derivatives

There are three methods to find the stability derivatives. The first one is of course by performing
flight tests or wind tunnel tests. These tests are, however, quite expensive. An alternative is using
computational fluid dynamics (CDF). This is usually less expensive, but it still requires a lot of work.

Finally, simple analytic expressions can be used. They are usually not very accurate. (Especially not
for strange aircraft configurations.) However, they don’t require a lot of work. In this chapter, we're
going to examine these analytic expressions.

6.1.2 Equations of motion

Before we will find stability derivatives, we first need to re-examine the equations of motion. The
symmetric equations of motion, for an airplane in a steady flight, are

X =—Dcosa+ Lsina + T, cos(ag + i,) = W siny,
Z =— Lcosa — Dsina — T), sin(ag + i) = —W cos .

—
EES
=
[N

~— ~—

Here, « is the initial angle of attack. (It is now not the zero-lift angle of attack.) Also, a now denotes
the deviation from this flight condition. We assume ag + %, is small, so we can use the small angle
approximation. If we also non-dimensionalize the above relations, we find that

%4
Cx=-C +Cpsina+ T = ———sin~g, 6.1.3
X D COS v Lsina+ T, V23 sin o ( )
Cz=—Cpcosa—Cpsina — Th(ag +ip) = _W €OS Yo, (6.1.4)
where we have defined T
T = 2. (6.1.5)
5,0‘/25

6.1.3 Nominal flight conditions

Let’s examine an aircraft flying a steady horizontal flight. We will now try to find the nominal stability
derivatives Cx,, Cz, and Cy,,. Since the aircraft is flying horizontally, we have o = 79 = 0. (Remember
that « is the deviation from the steady flight.) The relations of the previous paragraph now turn into

w

Cx, = CD+TC,.=0 and CZOZ_CL_Té(aO+ip):W~

o —

(6.1.6)

Finally, from moment equilibrium follows that Cp,, = 0.

24



6.2 Velocity stability derivatives

6.2.1 The basic relations

Now let’s find the stability derivatives with respect to the velocity. They are Cx,, Cz, and C,,,. They
are very hard to determine experimentally. This is because wind tunnels and flying aircraft can’t change
their velocity in a very accurate way. Luckily, we can find expressions for them.

Let’s start to examine Cx,. We can recall that

1 0X 1
Cx, = T—ane d X =CxzpV?s. 6.2.1
T Tvsov ™ X (6.2.1)
(We have used the fact that 0V/0u ~ 1.) Taking the derivative of the second relation, with respect to

V, gives
0X 0Cx 1

= = ———pV?S. 2.2
% CxpVS+ FYa 2pV S (6.2.2)
Inserting this into the first relation will give
oCx
Cx, =2C —V. 6.2.3
X, x+ 5y ( )

In a similar way, we can find the expressions for Cz, and C,,,. They are

oCy OCm

6.2.2 Rewriting the relations

There are still some terms we don’t know in the relations of the previous paragraph. They are Cx, Cyz,
Cm, 0Cx OV, 0C/OV and 0C,,/0V. How can we rewrite them?

We are considering deviations from the steady horizontal flight. So we can replace Cx by Cx, = —Cp+T..
Similarly, C'z is replaced by Cz, = —C, —T/(ag +1,) and Cy, by Cy,, = 0. That simplifies the equations
quite a bit.

The derivatives are a bit harder to rewrite. At a steady horizontal flight, we have Cx = —Cp + T and
Cyz = —Cp — T!(ao + ip). Differentiating this gives

C C T’ C 0 T’
That leaves us with some more derivatives. First, let’s examine 0Cp/IdV, 0CL/0V and 0C,,/0V. To
find them, we have to know why the coefficients Cp, C, and C,, vary with airspeed. These variations
are partly caused by changes in Mach number M, changes in thrust 7. and changes in Reynolds number
Re. Although changes in the Reynolds number may be neglected, we do have to consider M and T..
This implies that

0Cp 9Cp M _ 9Cp OT}

v~ oM av T or av’ (6:2.6)
9C, 9CLOM  9Cy O 627)
ov oM ov | T ov’ 2

!
9C, 0C, OM  OC,, OT! 625)

ov oM v T, oV’
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If we use this, in combination with earlier equations, we will find that

oCp\ dT! 9Cp

— / _ c — —

Cx, = —2Cp + 2T + (1 o > v -y, (6.2.9)
. 0L\ ATl acy

CZ“’ = — QCL - 2TC/(C¥0 + Zp) - <(a0 + Zp) + 8TC’ > v V- WM, (6210)

_9Cy dT! | 9Cy,
™THT AV M

M. (6.2.11)

6.2.3 The thrust derivative

The equations of the previous paragraph still have a lot of derivatives. We won’t go into detail on
derivatives with respect T, or M. However, we will consider dT7./dV. It turns out that we can write this
derivative as T -

o —k v (6.2.12)
where the constant k depends on the flight type. If we have a gliding flight, then 7. = 0. Thus also
dT}/dV =0 and therefore k = 0. If we have a jet-powered aircraft, then T, = T/3pV2S = constant.
From this follows that £ = 2. Finally, for propeller-powered aircraft, we have T,V = Té%pvg’S =

constant. This implies that k£ = 3.

Let’s use the above relation to simplify our equations. The equations for Cx,, Cz, and Cy,, now become

— acVD / 8C’D
Cx, =—2Cp + (2—k<1— aTg)>TC_ oar Mo (6.2.13)
— . aOL / 8CL
Cyz, =—2CL + ((k —2)(ag+ip) + K T ) T — WM’ (6.2.14)
60’!” ! 607”
Cm, =—k o1 T+ oYY M. (6.2.15)

When specific data about the type of flight is known, the above equations can be simplified even further.
For example, when the flight is at low subsonic velocities, then Mach effects may be neglected. Thus
0Cp/OM = 0Cr/OM = 0C,,/OM = 0. In other cases, there are often other simplifications that can be
performed.

6.3 Angle of attack stability derivatives

6.3.1 The basic relations for C'x, and Cy,

We will now try to find relations for Cx_, Cz, and C,,, . First we examine C'x, and Cz_ . They are

defined as
1 90X 0Cx 1 0Z 0Cyz

C’X(y = %pVS% = B and Cvz(y = m% = W (631)

If we take the derivative of equations (6.1.3) and (6.1.4), we find that
Cx,=—Cp,cosa+ Cpsina+ Cyp,_ sina+ Cf, cos o, (6.3.2)
Cyz,=—Cp, cosa+ Crsina— Cp,_sina— Cpcosa. (6.3.3)

We are examining an aircraft performing a steady horizontal flight. Thus o = 0. This simplifies the
above equations to

CXQZCL_CDQ and CZOL:_CL(,—OD%—CLQ%_CNQ- (6.3.4)

In the last part of the above equation, we have used the fact that Cp is much smaller than C7p,_ .
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6.3.2 Rewriting the relation for Cy,

We can try to rewrite the relation for Cx, . To do this, we examine Cp,_. Let’s assume that the aircraft
has a parabolic drag curve. This implies that

2
Cp =Cp, + &, which, in turn, implies that Cp,. = QCLQ CrL. (6.3.5)
mAe “ mAe
If we combine this with the former expression for Cx,, we wind up with
Cr,
Cx, =Cp(1-2—=). 6.3.6
Xe L ( 7rAe> ( )

6.3.3 The relation for C,,,

In a previous chapter, we have already considered C,,_. After neglecting the effects of many parts of the
aircraft, we wound up with

Teg — T de\ (Vi \” Sl
Crn, = O, “4—"2 — (1 - da) (;) g;. (6.3.7)

6.4 Pitch rate stability derivatives

6.4.1 The reasons behind the changing coefficients

We will now try to find Cx,, Cz, and Cy,,. Luckily, Cx doesn’t get influenced a lot by ¢. So it is usually
assumed that Cx, = 0. That saves us some work. We now only need to find Cz, and Cy,,. They are
defined as

1 0Z 0Cy 1 oM 0C,
¢« — 1 — o = qc and Cmq:ﬁiz qc *

3oV Se dq 0% 30V Se? 0q 0%

To find Cz, and C,, , we first have to understand some theory behind rotations. Why do the coefficients
change, when the aircraft rotates? This is because the effective angle of attack changes. Imagine an
aircraft with its nose pitching upward. The tailplane of the aircraft is thus pitching downward. Now
imagine you're sitting on the tailplane. As seen from the tailplane, it looks like the flow of air is coming
upward. This means that the tailplane experiences a bigger angle of attack.

Cy (6.4.1)

To find the exact value of the change in angle of attack A«a, we examine the center of rotation. This
is the point about which the aircraft appears to be rotating. The center of rotation lies on the Zs-axis.
The apparent rotation itself is performed with a radius R, which is given by

R=—. 6.4.2
. (6.4.2)
The change in angle of attack Ac«, at any point x on the airplane, is then given by

Aa="1 *Rxcg =7 ;xcg %. (6.4.3)

6.4.2 The changing coefficients

We know that the apparent angle of attack changes across the aircraft. This is especially important for
the horizontal tailplane. In fact, the change in angle of attack of the tailplane is given by

xh_xcggéNlh

_ ‘nqc
Aah = z % cV . (644)
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This change in angle of attack causes the normal force of the tailplane to change. In fact, it changes by
an amount

Wi 2 Sh Vi 2 Shlh qc
A — _n —A — — —. 4.
On = i, <V> g Aan = O, (V Se V (6.4.5)
Similarly, the change of the moment is given by
Vi, 2 Shln Vi 2 Shl% qc
AC,, = — — | —Aap=— — —. 4.
¢ ONi <V> s fn="n 7 ) S22 v (6.4.6)

We know that Cz, = 802/8‘176 and Cy,, = 8Cn,/8q75. By using this, we can find the contributions of the
horizontal tailplane to C,, and C,, . They are

Vi \? Suln
(Czq)h = _CNha (V) SE

(The minus sign in the left part appeared, because Cy is defined upward, while C is defined downward.)
There is, however, one small problem. The aircraft doesn’t consist of only a horizontal tailplane. It also
has various other parts. But it is very difficult to calculate the effects of all these parts. For that reason,
we make an estimate. We say that the contribution of the full aircraft C'z, is twice the contribution of
the horizontal tailplane (CZq)h' This implies that

2
Vh) Sl (6.4.7)

and (Cmq)h = —CNha (V R

Vh)2 Suln (6.4.8)

Oz, =2(Cz,), = 2. (V i,

For C,,,, we apply the same trick. But instead of a factor 2, a factor between 1.1 to 1.2 should now be

used, depending on the aircraft. We thus get

2 5,12
Se2

Crn, = (11~ 1.2) (C, ), = =(11 ~ 1.2)Cly, (Vh)

> (6.4.9)

6.5 Other longitudinal stability derivatives

6.5.1 Vertical acceleration stability derivatives

We now examine Cz, and C,,,. (We assume C'x, = 0.) To do this, we look at the horizontal tailplane.
During a steady flight, it has an effective angle of attack

d
ah:a—e—i—ih:a—ia—ﬁ—ih. (6.5.1)

Now let’s suppose that the aircraft experiences a change in angle of attack. This causes the downwash
angle ¢ of the wing to change. A time At = [, /V later will this change be experienced by the horizontal
tailplane. In other words, the downwash £(¢) at time ¢ depends on the angle of attack a(t — At) at time
t — At. A linear approximation of a(t — At) is given by

a(t — At) = at) — aAt. (6.5.2)
By using this, we find that the downwash is given by
_ de de de .l

t)= —a(t—At) = —a(t) — —a—. .0.
e(t) daa( ) daa( ) o0 (6.5.3)
This implies that the effective angle of attack is given by
de de .1, .
—a— —a+ &l i, 5.4
ap =« daa—l—daaV—I—zh (6.5.4)



The change in effective angle of attack is

. de 1, &
We now have enough data to find the coefficients Cz, and C,,,. We know that
Vi 2 Sh Vi 2 Sl de ac
ACy =-C — | FAq,=-C — — = 6.5.6
z Nha(v) 5 ~h N"“(V S¢ da V' (6:5.6)
ACH = —Cyy, () Stbipg, — gy, (Vi) Sl dede (6.5.7)
mT TN Y ) Tee ST TN\ YV ) S22 da Ve >

The coefficients Cz, and C,, are now given by

1 07 802 Vh 2 Shlh de
Cy =-—_2_222_ (¢ 2h = 6.5.8
Ze T 1pSeow 992 N (v) S da’ (6.5.8)
1 0M  9C, Vi \? Spl2 de
C,. = o _Tm h "h O 6.5.9
¢ 3pSe 0w 94f Nha (V) Se? da ( )

6.5.2 Elevator angle stability derivatives

The last stability derivatives we will consider in this chapter are Cx, , Cz; and C,, . Usually Cx
doesn’t vary a lot with d, so we assume that C'x, = 0. But what about C'z; 7 Well, this one is given by

i\ S
Cz,, = —Ch,,. (V’}) ?h (6.5.10)
Finally there is C,y,, . We can find that it is
2
_ Th = Teg Vi\" Suln
Cums, = Czs,——— = —Cn,, (V> o (6.5.11)

The coefficient C'z;  usually isn’t very important. However, C\,, is very important. This is because the
whole goal of an elevator is to apply a moment to the aircraft.

6.5.3 Effects of moving the center of gravity

We have one topic left to discuss. What happens when the CG moves from position 1 to position 27 In
this case, several coefficients change. This goes according to

Cinay = Cimy, — Oz, o200, (6.5.12)
Cz,, =Cz, — CZQLE%‘“, (6.5.13)
Crngy = Cimgy = (Czy + Oy, ) === 1 O, <M)2 (6.5.14)
Cinay = Cima, = Oz, 2222002, (6.5.15)
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7. Lateral stability derivatives

In the previous chapter, we found relations for the longitudinal stability derivatives. Now we’ll examine
the lateral stability derivatives.

7.1 Sideslip angle stability derivatives

7.1.1 Horizontal forces

We start by examining derivatives with respect to the sideslip angle 3. This angle is defined as

v v
=arcsin { — | = —. 7.1.1

9= avesin () ~ 7 7.1

We will now examine Cy,. Let’s examine an aircraft with a sideslip angle 8. This sideslip angle causes
a horizontal force Y on the aircraft. The most important contributors to this horizontal force are the

fuselage and the vertical tailplane.

First let’s examine the vertical tailplane. Luckily, this tailplane has a lot of analogies with the horizontal
tailplane, so we can use some short cuts. For example, the force acting on the vertical tailplane is given

by
doy (V,\° S
C =C Y R 7.1.2
( Yﬁ)v Yoo dp (V) S’ ( )
where S, is the vertical tailplane surface area and V,, is the average velocity over it. Also, Cyva = aacT‘:

Let’s take a closer look at the effective angle of attack of the tailplane «,. It’s not equal to 5.
This is because the fuselage also alters the flow by an angle o. (o is similar to the downwash ¢ for the

horizontal tailplane.) The vertical tailplane thus has an angle of attack of a,, = —(8 — ). (The minus is
present due to sign convention.) Inserting this relation into the above equation gives
do\ (Vi\* S,
C =—-C 1——= )= = 7.1.3
(@), Y< dﬁ)(V> g (713

Usually, most terms in the above equation are known. Only do/dg is still a bit of a mystery. It is very
hard to determine. However, it usually is negative. (So do/df < 0.)

Next to the tailplane contribution, there is usually also a contribution by the fuselage. However, we don’t
go into depth on that here.

7.1.2 Rolling momemts

Now let’s examine the so-called effective dihedral Cj,. The coefficient C; was defined as

L

Cr=
ST

(7.1.4)

It is important to note that L is not the lift. It is the moment about the X axis. Cj is thus not the lift
coefficient either.

The effective dihedral Cj, mostly depends on the wing set-up. Both the wing-dihedral T' and the
sweep angle A strongly effect C;. (The wing-dihedral T' is the angle with which the wings have been
tilted upward, when seen from the fuselage.)

First let’s examine an aircraft with a wing-dihedral I'. We suppose that the aircraft is sideslipping to
the right. From the aircraft, it now appears as if part of the flow is coming from the right. This flow
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‘crouches’ under the right wing, pushing it more upward. However, it flows over the left wing, pushing
that one downward a bit. This thus causes the aircraft to roll to the left.

To find more info about the moment caused by the wing-dihedral, we need to examine the new angle of
attacks of the wings a,,, and o,,. By using small angle approximations, we can find that

Oy, = o — fT and Qp, = a+ (L. (7.1.5)

The changes in the angles of attack are thus Aa,,, = —0I" and A«a,,, = BI'. So the moment caused by
the wing-dihedral is approximately linearly dependend on both $ and I'. (We thus have Cj, ~T".)

Second, we look at an aircraft with a wing sweep angle A. The lift of a wing strongly depends on the
flow velocity perpendicular to the leading edge. Again, we suppose that part of the flow is coming in
from the right. This causes the flow to be more perpendicular w.r.t. to the right wing leading edge, thus
increasing the lift. However, the flow is more parallel w.r.t. the leading edge of the left wing. The left
wing thus has reduced lift. It can be shown that the change in lift for the aircraft, due to a sweep angle
A, is

AL = C’L%pV2§ (cos® (A — B) — cos® (A + B)) ~ C’L%pVQS sin (2A0) . (7.1.6)

The rightmost part of the equation is an approximation. It only works for small values of 5. The above
equation shows that the lift more or less linearly depends on A and (. It can be shown that the same
holds for the moment Cj. The effective dihedral Cj, is thus proportional to A.

Next to the wing, also the horizontal tailplane and the fuselage effect Cj,. However, we won’t examine
these effects.

7.1.3 Yawing moments

The stability derivative Cy,, is called the static directional stability. (It’s also known as the Weath-
ercock stability.) It is about just as important as C,,. It can be shown that, if C,, is positive, then
the aircraft is stable for yawing motions. However, if C),, is negative, then the aircraft is unstable for
yawing motions.

Naturally, we want to have C,, > 0. Luckily, the wings and the horizontal tailplane have a slightly
positive effect on Cy,,. However, the fuselage causes C),, to decrease. To compensate for this, a vertical
tailplane is used, strongly increasing C,,.

Let’s examine the effects of this tailplane. You may remember that the normal force on it was

do\ (Vi\° S,
=— 1-— — | —. 1.
©n),=-ox, (1-5) (%) % (r.17)
This normal force causes a moment
(C”B)v = — (Cyﬁ)v (Zv_bzcg sin ag + xv_bxcgcosao> . (7.1.8)
We can usually assume g to be small. (Thus cosag =~ 1.) Also, % sin a is usually quite small,

compared to the other term, so we neglect it. If we also use the tail length of the vertical tailplane
ly = xy — Ty, We can rewrite the above equation to

d Vo\? Soly
(Cns), = Cv., <1 - d;) <V) 5 (7.1.9)

From this, the correspondence to Cy,,, again becomes clear. To emphasize this, we once more show the
equation for the horizontal tailplane contribution to Cy,,, . Rather similar to (C,) , it was given by

d=\ (Vi\” Sl
(Com )y = —Cv,. (1 - df) (Vh> o (7.1.10)
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7.2 Roll rate stability derivatives

7.2.1 Horizontal forces

It is time to investigate the effects of roll. In other words, we will try to find the stability derivatives Cy,,
Cy, and Cy, . (Of these three, C, is the most important.) First we examine Cy,. It is defined such that

pb 1 oo
Y, =Cy, ——==-pV~-S. 7.2.1
r= Moy of (72.1)
The only part having a more or less significant contribution to Cy, is the vertical tailplane. Let’s examine
a rolling aircraft. Due to this rolling, the vertical tailplane is moving horizontally. It will therefore get an
effective angle of attack. This causes a horizontal force. A positive roll rate gives a negative horizontal
force. Cly, is thus negative.

However, Cy, is usually rather small. For this reason it is often neglected. So we say that Cy, ~ 0.

7.2.2 Rolling moments

Now we will try to find C7,. Again, we examine a rolling aircraft. One wing of the aircraft goes up, while
the other one goes down. This motion changes the effective angle of attack and thus also the lift of the
wings. The upward going wing will get a lower lift, while the downward moving wing will experience a
bigger amount of lift. The wing forces thus cause a moment opposite to the rolling motion. This means
that Cp, is highly negative. It also implies that the rolling motion is very strongly damped. (We will see
this again, when examining the aperiodic roll in chapter 10.)

We can also investigate the actual effects of the rolling motion. To do this, we examine a chord at a
distance y from the fuselage. This chord will have an additional vertical velocity of py. The change in
angle of attack of this chord thus is
py _pb oy
Aa=="2=———". 7.2.2

TV T v2 (722)
So a chord that is far away from the fuselage will experience a big change in angle of attack. The change
in lift is therefore biggest for these chords. These chords also have a relatively big distance to the CG of
the aircraft. For this reason, they will significantly effect the resulting moment.

Other parts of the aircraft may also influence Cj, slightly. However, their influence is very small, compared
to the effects of the wings. The contributions of the other parts are therefore neglected.

7.2.3 Yawing moments

To find C),,, we again examine a rolling aircraft. The rolling of the aircraft has two important effects.

First, we look at the vertical tailplane. As was discussed earlier, this tailplane will move. It thus has an
effective angle of attack, and therefore a horizontal force. This horizontal force causes the aircraft to yaw.
A positive rolling motion causes a positive yawing moment. The vertical tailplane thus has a positive
contribution to C,,. (So (Cnp)v >0.)

But now let’s look at the wings. Let’s suppose that the aircraft is rolling to the right. For the right wing,
it then appears as if the flow comes (partially) from below. The lift is per definition perpendicular to the
direction of the incoming flow. The lift vector is thus tilted forward. Part of this lift causes the aircraft
to yaw to the left. The opposite happens for the left wing: The lift vector is tilted backward. Again, this
causes a yawing moment to the left. (This effect is known as adverse yaw.) So we conclude that, due
to the wings, a positive rolling motion results in a negative yawing moment. We thus have (C”P)w < 0.
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For most normal flights, the effects of the vertical stabilizer are a bit bigger than the effects of the wing.
We thus have C,,, > 0. However, high roll rates and/or high angles of attack increase the effect of the
wings. In this case, we will most likely have C),, < 0.

7.3 Yaw rate stability derivatives

7.3.1 Horizontal forces

In this part, we’ll try to find the stability derivatives Cy,, C;, and C,,.. We start with the not very
important coefficient Cy,. Let’s examine a yawing aircraft. Due to the yawing moment, the vertical
tailplane moves horizontally. Because of this, its effective angle of attack will change by
rl rb 1
Aoy = — = ———. 7.3.1
YV 2V b2 ( )

The contribution of the tailplane to Cy, is now given by

Vo \? Syl
(Cy,), =2Cy,, <V> S (7.3.2)

The contribution is positive, so (Cy,), > 0. Next to the vertical tailplane, there are also other parts
influencing Cy,. Most parts have a negative contribution to Cy,. However, none of these contributions
are as big as (Cy,),. The stability derivative Cy, is therefore still positive. It is only slightly smaller
than (Cy,), .

7.3.2 Rolling moments

We will now examine Cj,. There are two important contributions to Cj,. They come from the vertical
tailplane and the wings.

First we examine the vertical tailplane. We just saw that a yawing motion causes a horizontal force on
the vertical tailplane. This horizontal force causes a moment

(1), = (Cy,), <Zv_bzcg cos o — becg sin ao) . (7.3.3)

A positive yawing motion results in a positive moment. We thus have (C;,), > 0.

Now let’s examine the wings. Because of the yawing motion, one wing will move faster, while the other
wing will move slower. This causes the lift on one wing to increase, while it will decrease on the other
wing. This results in a rolling moment.

Sadly, it’s rather hard to find an equation for the moment caused by the wings. So we won’t examine
that any further. However, it is important to remember that a positive yawing motion causes a positive
rolling moment. We thus have (Cj,),, > 0. The total coefficient C;_ is then, of course, also positive.

7.3.3 Yawing moments

Finally, we examine C), . The most important contribution comes from the vertical tailplane. We know
that a yawing motion causes a horizontal force on the vertical tailplane. This force is such that it damps
the yawing motion. The contribution (C,,,), is thus very highly negative. In fact, it is given by

v

ly Vo2 S,12
(Cnr)v - (Cyr)v z - _QCYUO( (V) Sb2 . (734)
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The vertical tailplane is about the only part seriously effecting the coeflicient C,,.. Sometimes also the
fuselage effects it. This effect is also negative. (So (Cy,); < 0.) The coefficient C,,, itself is thus also
very strongly negative. This implies that the yawing motion is highly damped.

7.4 Other lateral stability derivatives

7.4.1 Alleron deflections

Let’s consider the ailerons. The aileron deflection ¢, is defined as

b0 =00 ., —0 (7.4.1)

Aright Aleft*

A deflection of the ailerons causes almost no change in horizontal forces. We thus have Cy; = 0. The
so-called aileron effectiveness C, is, of course, not negligible. (Causing moments about the X axis
is what ailerons are for.) The coefficient C,,; usually isn’t negligible either. By the way, the moments
caused by an aileron deflection are given by

1 1
L=C,, 6a§pV25b and N =Cn;, da; pV2Sb. (7.4.2)

Ci;, is negative. A positive aileron deflection causes a negative rolling moment. Cy,; is, however, positive.
So a positive aileron deflection causes positive yaw.

7.4.2 Rudder deflections

The rudder stability derivatives are Cy; , i, and Cy, . The forces and moments caused by a rudder
deflection are given by

1 1 1
Y = CYJT(STipVQS, L= C’léréripVQSb. and N =Ch, 5T§pV256. (7.4.3)
The coefficient Cly; is given by
Vo \? S,
Cy(;T = CYv5 (V) ? (744)
The coefficient €y, is then given by
Cis, = Cys, <%sz09 cosag — @ sin a0> ) (7.4.5)

Ci;, is positive. This means that a positive rudder deflection causes a positive rolling moment. This
effect is generally not desirable. Especially if z, — 24 is big, measures are often taken to reduce this
effect.

Finally, the rudder effectiveness C,,; is given by

ly
Cus, = =, - (7.4.6)

This coefficient is negative. A positive rudder deflection thus causes a negative yawing moment.

7.4.3 Spoiler deflections
The last things we examine are the spoilers. Spoilers are often used in high-speed aircraft to provide roll

control. A spoiler deflection d5 on the left wing is defined to be positive. Due to this definition, we have
Cis. < 0and Cp,; < 0. Of these two, the latter is the most important.
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8. Longitudinal stability and control

In this chapter, we will start to investigate the stability of the entire aircraft. This can be split up into
two parts: longitudinal and lateral stability. In this chapter, we will only look at longitudinal stability.

8.1 Stick fixed longitudinal stability

8.1.1 Effects of the wing and the tail on stability

To start our investigation in the stability of an aircraft, we reexamine the moment equation. In an earlier
chapter, we found that

Teg — Tw Vi \? Suln
Cm = Umae + CNwa (Oé - ao)g? - CNh <V> SE - 07 (811)
where Cl, is given by
de .
CNh = CNha (a — ao) 1-— @ + (ao + Zh) + CNhée (56. (812)

We can also rewrite the moment equation to C,, = C,,, +Cp,, . In this equation, C,, , is the contribution
due to the wings. Similarly, C,,, is the contribution from the horizontal tailplane. They are both given
by

me = Cma,c +Cn

we

Teg — Loy Vi \ 2 Syl
(o — ayp) g? and Cm, =—Cn, (Vh> g(;h' (8.1.3)

Taking a derivative of the moment equation will give us Cyp,, = Ci,, + C’m%, where

Teg — Ty de\ (Vi \2 Syl
Omaw = ONwa % and Cm“h = _CNha <1 — da) <V}YL> g’Eh' (814)

To achieve stability for our aircraft, we should have Cy,, < 0. Usually, the wing is in front of the CG.
We thus have .4 — 2,y > 0 and also C,,, > 0. The wing thus destabilizes the aircraft. Luckily, the
horizontal tailplane has a stabilizing effect. This is because Cmah < 0. To achieve stability, the stabilizing
effect of the tailplane should be bigger than the destabilizing effect of the wings. We should thus have

1Cray | < 1Crmia, |- (8.1.5)

8.1.2 Effects of the center of gravity on stability

We will now examine the effects of the CG on the stability. To do this, we suppose x4 increases (the
CG moves to the rear). However, the other parameters (including d.) stay constant. The movement of
the CG causes C,,,, to increase. At a certain point, we will reach C,,_, = 0. When the CG moves beyond
this position, the aircraft becomes unstable.

Let’s examine the point at which C),, = 0. We remember, from a previous chapter, that this point is
called the neutral point. And, because the stick deflection is constant (4. is constant), we call this point
the stick fixed neutral point. Its z coordinate is denoted by z,,, . To find it, we can use

Tp s — T d V; 2SLCL’nm—$
Crme = Oy ="+ Cy,,, (1 - di) (;) é% (8.1.6)

35



After some mathematical trickery, we can find the position of the stick fixed neutral point, with respect
to the wing. It is given by

Tnjiw — %o _ Oy, de\ (Vi \? Suln
¢ ~ O, (1_ da) (V) Sc (8.L.7)

From this, we can also derive the position of the stick fixed neutral point, with respect to the aircraft

CG. This is given by
Teg — Ty,
Cma = CNa o e . (818)

Cc

The quantity % is known as the (stick fixed) stability margin. It is an indication of how much
the CG can move, before the aircraft becomes unstable.

8.1.3 The elevator trim curve

Now let’s examine the effects of the elvator deflection §.. We know from a previous chapter that the
elevator deflection necessary to keep the aircraft in equilibrium is

1
68 = - (Cmo + Cma (CY - 040)) . (819)
Cins,

0. depends on a. To see how, we plot §, versus a. We usually do this, such that the y axis is reversed.
(Positive d, appear below the horizontal axis.) Now we examine the slope of this graph. It is given by

s,  Cp.

da Cms,

(8.1.10)

We always have Cy,, < 0. To make sure we have C,, < 0 as well, we should have dd. /da < 0. The line
in the ., a graph should thus go upward as « increases. (Remember that we have reversed the y axis of
the graph!)

d. also depends on the aircraft velocity V. To see how, we will rewrite equation (8.1.9). By using
Cn~=Cn, (a—ap) =~ %, we find that

1 C w
Jp = — Crmo Mo ) 8.1.11
] ( o, ;pw‘s) (8.1.11)

We can now plot J. against V. (Again, we reverse the . axis.) We have then created the so-called
elevator trim curve. Its slope is given by

s, AW 1 G,
dV ~ pV35Cpy Cn,

(8.1.12)

To have C,,_, < 0, we should have dd./dV > 0. The line in the graph should thus go downward. Also, if
you want to fly faster in a stable aircraft, you should push your stick forward.

8.2 Stick free longitudinal stability

8.2.1 The stick free elevator deflection

Previously, we have assumed that J. is constant. The pilot has his stick fixed. But what will happen if
the pilot releases his stick? It would be nice if the aircraft remains stable as well.
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Let’s suppose the pilot releases the stick. In that case, aerodynamic force will give the elevator a certain
stick free elevator deflection o, . To find dc,, .., we examine the moments H. about the elevator
hinge point. (Or, to be more precise, we look at the non-dimensional version C},,.) Contributing to this
hinge moment are the horizontal tailplane, the elevator and the trim tab. By using a linearization, we
find that

Cheh,ee = C}la ap + C}Laéefree + C}Lgt 6te =0. (821)
It follows that the stick free elevator deflection is
Ch Cha
e = ——q — Lo . 8.2.2
free Ch,; Qp Ch(s te ( )
From this, we can also derive that
dd, C d
( ) = ——Zha (1 - 5) . (8.2.3)
da Free Ch, do

The elevator deflection thus changes as the angle of attack is changed.

8.2.2 Differences in the moment due to the stick free evelator

The free elevator deflection effects the contribution C,,, of the horizontal tailplane to the moment C,,.
Let’s investigate this. We can remember that

Vh>25hlh (8.2.4)

Cony, = = (Cnpan + O, 0. ) (V o,

We now substitute d. by 6 If we also differentiate with respect to «, and work things out, we will

get

€free”

Ch de Vi 2 Shlh
= _ — e ) (1—-—) (=2 . 2.
Con, (CN’ch g ch5> ( da) (v> Se (8.2.5)

If we compare this equation to the right side of equation (8.1.4), we see that only Cy, has changed. In
fact, we can define

Ch,,
CNh&free = CNhQ - CNh{; Ché . (826)

If we use CNhaf , instead of Cl, , then our stability analysis is still entirely valid.

Let’s take a closer look at the differences between ONhaf and Cy, . This difference is the term

Cn,, gj”* - We know that C, > 0. The term Cj; is interesting. If it would be positive, then it can be
s
shown that the elevator position is unstable. So, we have to have C}, < 0. Finally there is C}_. This

term can be either positive or negative. If it is positive (Cj, > 0), then the stick free aircraft will be
more stable than the stick fixed aircraft. If, however, it is negative (C, < 0), then it will be less stable,
or possibly even unstable.

8.2.3 The stick free neutral point

Let’s find the stick free neutral point z,,, ., . Finding z,,, . goes similar to finding zy,,,,. In fact, we
can adjust equations (8.1.7) and (8.1.8) to

Tngree =T _ Doy (0 de\ (Vi) Sula (8.2.7)
c Cn, da 14 se’ h
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'I,Cg - xnfree

C

Mafree

Afree ¢

(8.2.8)

In this equation, we have C Nojroo & Cn,, . This is because the elevator has a negligible influence on Cy._,
compared to the influence of the wing.

We can also find the position of the stick free neutral point, with respect to the stick fixed neutral point.
Subtracting equation (8.1.7) from equation (8.2.7) gives

Tngree ~ Tnpip _ 7CN’*5 % 1— % E ’ Suln — Crms Cha 1— @ (8.2.9)
c Chn,, Ch, do Vv Se Cn,, Chy, da )’ -

8.2.4 Elevator stick forces

Now we will examine the stick forces which the pilot should exert. We denote the stick deflection by

Se- By considering the work done by the pilot, we find that F.ds. + H.dé. = 0. From this follows that
the stick force F, is given by

dde dde

F,=——H, =—

¢ ds. ¢ ds,

By the way S, is the elevator surface and ¢, is the mean elevator chord. If we massively rewrite the

above equation, we can eventually find that

dé Vi 1 w1
F,.=——%S5.¢ | — " V2 . 2,11
e dSe Sece < % ) (Cho 2pV + Cha S CNQ ) (8 )

1
Ch., 5pv,fseae. (8.2.10)

We see that F, consists of two parts. One part varies with the airspeed, while the other part does not.
By the way, the coefficients Cj, and C} are given by

Ch, Ch, )
C =—=C, —="2C Ch, 8, 8.2.12
= G, e T G, P (0 )+ Gl (8:2.12)
Ch Ch mcg—xn
C; =—="0,, =—_"C Jree, 8.2.13
ha Omg Afree Om,; N, ¢ ( )

We see that C’,’10 depends on 4, . To simplify our equation, we can apply a small trick. We define d;, to
be the value of &;, for which Cj = 0. It follows that

1 Chs Ch .
= Cnm °C . 8.2.14
teo Chét (CTrL5 e ¥ CNm; Nho‘f'r'ee (040 * Zh) ( )
We can now rewrite the stick deflection force as
dbe . (V> (W Ch, Teg—Tn, 1
F.=—28.¢ | — — Iree _ ZpV2Ch, (6, — 0 ) 8.2.15
ds, (v) (S Crs, € 2PV Chi, (01 =) (8.2.15)

The control forces, which the pilots need to exert, greatly determine how easy and comfortable it is to
fly an airplane. The above equation is therefore rather important.

We can also derive something else from the above equation. Let’s define the trim speed V;, to be the
speed at which F, = 0. We now examine the derivative dF,/dV at this trim speed. (So at F, = 0.) If
it is positive (dF./dV > 0), then the aircraft is said to have elevator control force stability in the
current flight condition. It can be shown that this derivative is given by

dF, dSe . (Vi \°W Ch, Teg—Tn,,,. 1
; =280l (5 ) == free 8.2.16
(dv)Feo dse ‘ <Vtr> S Cs, c Vir ( )

It’s the job of the designer to keep this derivative positive.
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8.3 Longitudinal control

8.3.1 Special manoeuvres

Previously, we have only considered steady flight. Now we suppose that we are performing some special
manoeuvre. We will consider both a steady pull-up manoeuvre and a horizontal steady turn.

During these manoeuvres, we will have a certain load factor n = N/W. There are two parameters that
are important for the manoeuvres. They are the elevator deflection per g, denoted by dd./dn, and
the stick force per g, denoted by dF./dn. Both these parameters should be negative. And they may
not be too high or too low either.

8.3.2 The elevator deflection per ¢

We will now find an expression for dd./dn. Let’s suppose we'’re initially in a horizontal steady flight. But
after a brief moment, we’ll be in one of the special manoeuvres. In this brief moment, several aircraft
parameters have changed.

Let’s examine the change in normal force ACy and the change in moment AC,,,. The change in normal
force is effected by the angle of attack o and the pitch rate q. This gives us

AN W
%pVZS N %pVQS

ACy = An = Cy.Aa — CZqA%. (8.3.1)
Similarly, the change in moment is effected by the angle of attack «, the pitch rate ¢ and the elevator
deflection d.. This gives us

AC,, = 0= Cy. Acv + cqu% + Coy. AG. (8.3.2)

You may wonder, why is AC,, = 07 This is because both in the initial situation and the final situation,
we have a steady manoeuvre. There is thus no angular acceleration present. The moment must thus stay
constant.

From the first of the above two equations, we can find the derivative of @ with respect to n. It is given
by _
C

dOé 1 [/[/ CZq dqv

— = —. 8.3.3
dn  Cy, %pVZS * Cn, dn ( )
From the second of these equations, we can find that
dod, 1 da d%
e [ Cp— +Cp. =2 | . 8.3.4
dn Cins, ( “dn +Cm, dn) ( )
Inserting the value of da/dn will eventually give us
s, 1 (Cpn., W Cp,, C d%
Ze - . + i o) 2 (8.3.5)
dn Cmée CNQ §pVQS CNQ N dn

We will determine the term dqvé /dn later, since it depends on the type of manoeuvre that is being
performed.

8.3.3 The stick force per g

It’s time to find an expression for dF,/dn. From equation (8.2.10), we can derive that

dF,  ds.1 oo doy, ds.
dn _dse 2pVh SeCe (Ch + Cha dn) .

8.3.6
2 (5:5.6)
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We already have an expression for dd./dn. The expression for «y, is a bit tricky. This is because we also
have a rotation ¢. If we take this into account, we will have

de . Iy qC
= — 1 _ - —_— . J.
ap = (a ao)( da)+(a0+zh)+ =V (8.3.7)
The derivative of oy, with respect to n, will then be
day, de\ da 1, d%
el R 3.
dn ( da) dn+ ¢ dn (8:38)

Luckily, we still remember da/dn from equation (8.3.3). From this, we can derive an equation that’s way
too long to write down here. However, once we examine specific manoeuvres, we will mention the final
equation.

8.3.4 The pull-up manoeuvre

Let’s consider an aircraft in a pull-up manoeuvre. When an aircraft pulls its nose up, the pilot will
experience higher g-forces. This will thus cause the load factor n to change.

To be able to study pull-up manoeuvres, we simplify them. We assume that both n and V are constant.
If this is the case, the aircraft’s path will form a part of a circle. The centripetal accelaration thus is
N — W =mVyq. By using n = N/W and W = mg, we can rewrite this as

gc _ g¢
Differentiating with respect to n gives
di c 1 W W
Voo 9 where  jio = —o (8.3.10)

dn V2 2p. Lpv2s pSe  gpSe’

By using this, we can find the elevator deflection per g for a pull-up manoeuvre. It is

doe 1 w Crm Cz Cm
dn |\ 1+5 L. 3.11
d?’l Cfnzc;E %pVQS (CNa ( + 2/,(,C > + 2/_1/(/ ) (8 3 )

Often the term Cyz, /24, can be neglected. This simplifies matters a bit. We can also derive a new
expression for the stick force per g. We will find that

dF,  d6. W (Vi ., Cn, [ Crma, Con,,
— o _n Ce ree ree . . .12
dn dseS(V> el g - (8:3.12)

In this equation, we can see the parameters Cmaf and C

Mot These are the values of Cy,, and C,y,,
when the pilot releases his stick. They are given by

LTeg — Tw
=Cy == v

Wey =

Che n
= Cuny = O, G 2.

C

7n(’f7‘ee.

and C

mqfree

(8.3.13)

n
“hfree

(The relation for Cy,,,, was already given in equation (8.2.5).)
v free

8.3.5 The steady horizontal turn

Now let’s consider an aircraft in a steady horizontal turn. It is performing this turn with a constant roll
angle ¢. From this, we can derive that

Ncosp=W and N —Wcosep =mVq. (8.3.14)
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If we combine the above relations, and rewrite them, we will get

qc  gc 1
Differentiating with respect to n will then give us
€ 1 W 1
V- [14+ ). 8.3.16
dn  2pe 1pV2S ( * n2> ( )

By using this, we can find the elevator deflection per g for a horizontal steady turn. It is

dbe 1 w Cm Cnm. Cz Cm 1
= — e e 4 el 1+ — . 3.17
dn Cmée %,OVQS <0Na * (CNa 2pc M 2.“C) ( * n2>) (8.3.17)

Again, we may often assume that Cz, /2u. =~ 0. This again simplifies the equation. We also have the
stick force per g. In this case, it is given by

dF,  ds. W (Vi\? . Chy (Cmay..  Cmg,,.. 1
— R Jree 14+ — . 3.1
dn  ds. S (V) SECQC’mJe Cn, * 2pc +n2 (8.3.18)

It is interesting to see the similarities between the pull-up manoeuvre and the steady horizontal turn. In
fact, if the load factor n becomes big, the difference between the two manoeuvres disappears.

8.3.6 The manoeuvre point

An important point on the aircraft, when performing manoeuvres, is the manoeuvre point. It is defined
as the position of the CG for which ddé./dn = 0. First we will examine the stick fixed manoeuvre
point x,,,,, . To have dd./dn = 0 for a pull-up manoeuvre (neglecting Cz, /2u.), we should have

Cm Cm Teg — Tny, C
C a _ _ fiz + 2 = (. 8.3.19
Cn, 2pc ¢ 2pc ( )

If the above equation holds, then the CG equals the manoeuvre point. We thus have

xmfm - mnfm o Cmq l'cg - xmfm _ CvmE¥ Cmq
— = — and also — = + .
c 21¢ C Ch, 20

(8.3.20)

(Remember that the above equations are for the pull-up manoeuvre. For the steady turn, we need to
multiply the term with C,,, by an additional factor (14 1/n?).) By using the above results, we can

eventually obtain that

d(se 1 W xcg - xmf,-,,
—-— = - = 8.3.21
dn Cons, 3pV2S & ( )

By the way, this last equation is valid for both the pull-up manoeuvre and the steady horizontal turn.

We can also find the stick free manoeuvre point . . This goes, in fact, in a rather similar way.
We will thus also find, for the pull-up manoeuvre, that

C

mqfree

Tmyree ~ Tnpree Leg = Tmpree Omafrm

d 4 Sragee (8.3.22)
- o an - . T 3.

(For the steady turn, we again need to multiply the term with C'mqfree by (1 + 1/n2).)
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9. Lateral stability and control

In this chapter, we will examine lateral stability and control. How should we control an aircraft in a
non-symmetrical steady flight?

9.1 The equations of motion

9.1.1 Derivation of the equations of motion for asymmetric flight

Let’s examine an aircraft in a steady asymmetric flight. It has a roll angle ¢ and a sideslip angle 5. By
examining equilibrium, we can find that

Wsing +Y =mVr, L=0 and N =0. (9.1.1)

Non-dimensionalizing these equations gives
Crp— 4ub% +Cy =0, C;=0 and C,=0, (9.1.2)
where we have p, = % We can also apply linearization to the above equations. This will then give us
Cro+Cy, B+ (Cy, — 4;@% + Cy;, 00 + Cy; 6r = 0, (9.1.3)
Clﬁ,ﬁ’+C’lT% + Cis, 00 + Ci;, 01 = 0, (9.1.4)
Cn[,ﬂ-l—CnT% + Chg, 0 + Cns, 6r = 0. (9.1.5)

9.1.2 Simplifying the equations of motion

Let’s examine the equations of the previous paragraph. There are quite some terms in these equations
that are negligible. They are Cy; , Cj; , Cy,, Cy,, and Cy; . By using these neglections, and by putting
the above equations into matrix form, we will get

®
CL Cy/3 *4,ub 0 0 ﬂ 0
0o ¢, C. G, 0 21 =10 (9.1.6)
0 Cpny Cn. 0 Cny| |6a 0

oy

Let’s assume that the velocity V is already set. We then still have five unknowns and three equations.
That means that there are infinitely many solutions. This makes sense: You can make a turn in infinitely
many ways. How do we deal with this? We simply set one of the parameters. We then express three of
the remaining parameters as a function of the last parameter. (This fifth parameter is usually %) So
let’s do that.

9.2 Steady horizontal turns

9.2.1 Turns using ailerons only

Let’s try to turn the aircraft, by only using ailerons. We do not use the rudder and thus have 4, = 0.
We can insert this into the equations of motion. We then solve for the parameters 3, ¢ and §,. This will
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give us

d C
ﬁb =_—_"r 59 (since Cy,, < 0 and C,, > 0), (9.2.1)
dL C T B
2V ng
Ay + Cy, Sne
d Hb Y, Cn
LA " S, (9.2.2)
d3w Cr
d5a o 1 Clgcnr - Clrcng (9 92 3)
dzb  C C . o
2V da ne

The sign of the last equation is still a point of discussion. We would like to have dé,/ d%. If this is the
case, then we have so-called spiral stability. We know that Cj;, < 0 and C,, > 0. So spiral stability
is achieved if

ClﬁCm, — Cl,,cnﬁ > 0. (9.2.4)

We will find out in the next chapter why they call this the spiral stability condition.

9.2.2 Turns using the rudder only

We can also make a turn using only the rudder. So we have §, = 0. This again gives us three equations,
being

d C
ﬂb =——l>0 (since Cj, > 0 and Cj, < 0), (9.2.5)
d3% Ci, "
do A+ Oy, g
B
LA >0, (9.2.6)
d3v L
1 C,Ch, —C.C,
ar _ S (9.2.7)
dW C’n(gr Clﬁ

In the last equation, we have ), < 0 and Cj, < 0. If there is also spiral stability, then we have
dé,/d3L < 0.

9.2.3 Coordinated turns

In a coordinated turn, we have 8 = 0. This means that there is no sideward component of the force
acting on the aircraft. This is an important factor for passenger comfort. For the coordinated turn, we
again have three equations. They are

d 4
f, =7 >, (9.2.8)
d
LZ = — Cl, >0 (since Cj. > 0 and Cj; < 0), (9.2.9)
dsvr Cls, a
déz __Cn <0 (since Cy,, < 0 and C,, < 0). (9.2.10)
dayr Chs, -
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9.2.4 Flat turns

If we want the aircraft to stay flat during the turns, then we have ¢ = 0. It then follows that

d 4
Tﬂb =y, (9.2.11)
dW CY[.;
From this, we can also derive that
s, do,
— >0 and 5 <0. (9.2.12)
dzb dzb
2V 2V

9.3 Other flight types

9.3.1 Steady straight sideslipping flight

Let’s examine a steady straight sideslipping flight. This type of flight is usually only used during landings
with strong sidewinds. However, sometimes the aircraft is brought into a steady straight sideslipping flight
involuntarily. It is therefore important to know how the aircraft behaves.

In a straight flight, we have % = 0. We can now derive that

s,  Cp,

do _ vy -
A~ Cus,

- Y

b _ G,
dp Cis,

and

(9.3.1)

We generally want to have dd,/d3 < 0 and do,/dB > 0. We also always have Cj, < 0 and C,, < 0.
This implies that we should have Cj, <0 and C,,, > 0.

9.3.2 Stationary flight with asymmetric power

Let’s suppose one of the engines of the aircraft doesn’t work anymore. In this case, a yawing moment
will be present. This moment has magnitude

AT,y
Cyp, = k2= 9.3.2
The variable AT}, consists of two parts. First there is the reduction in thrust. Then there is also the
increase in drag of the malfunctioning engine. v, is the Y coordinate of the malfunctioning engine.
Finally, k is an additional parameter, taking into account other effects. Its value is usually between 1.5
and 2.

Now let’s try to find a way in which we can still perform a steady straight flight. (We should thus have
r = 0.) We now have four unknowns and three equations. So we can still set one parameter. Usually,
we would like to have ¢ = 0 as well. In this case, a sideslip angle 3 is unavoidable. If the right engine is
inoperable, then a positive rudder deflection and sideslip angle will be present.

We could also choose to have 5 = 0. In this case, we will constantly fly with a roll angle ¢. The wing
with the inoperable engine then has to be lower than the other wing. So if the right wing malfunctions,
then we have a positive roll angle.
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10. Aircraft modes of vibration

It is finally time to look at the dynamics of an aircraft. How will an aircraft behave, when given elevator,
rudder and aileron deflections? What are its modes of vibration? That’s what we will look at in this
chapter.

10.1 Eigenvalue theory

10.1.1 Solving the system of equations

To examine the dynamic stability of the aircraft, we examine the full longitudinal equations of motion.
The symmetric part of these equations were

CXu — 2,uCDC CX‘1 CZO Cxq i 0
C C Cyz. —2u.)D. —C 2u. + C 0
7. Zo T (Cz, = 2pc) Xo pe + Lz, - (10.1.1)
0 0 —D. 1 0 0
CnLu CmQ + Cm@ DC 0 Cmq - QM('K}Z/D(' % 0

In this system of equations, we have assumed stick-fixed conditions. All inputs are zero. We could try
to find solutions for the above system of equations. A common way to do this, is to assume a solution of
the form

x(t) = Aetee, (10.1.2)

In this equation, x(¢) is our solution. s. = %t is the dimensionless time. From this form follows that
D.x = A\.x. If we insert this into the equations of motion, we find

Cxu — QMC)\C CXa CZO Cxq Au 0
. —2 — 2 A
OZu CZ@ + (Cza :[‘LC))\C C’AX(J He + CZq @ e)\csc _ 0 (1013)
0 0 —Ae 1 Ag 0
Con. Crn + Con Ae 0 Cm, —2uK22] L4, 0

We can write this matrix equation as [A] Ae*e*c = 0. The exponential in this equation can’t be zero, so
we can get rid of it. We thus need to solve [A] A = 0. One solution of this equation is A = 0. However,
this is a rather trivial solution, in which we are not interested. So we need to find non-trivial solutions.
This is where our knowledge on linear algebra comes in. There can only be non-trivial solutions, if
det [A] = 0. Applying this will give us an equation of the form

ANE+ BN+ CN2+ DA+ E =0. (10.1.4)

This equation is called the characteristic polynomial. Solving it will give four eigenvalues ., A.,,
Aeg and A.,. Corresponding to these four eigenvalues are four eigenvectors Aq, Ay, Az and Ay. The
final solution of the system of equations now is

X = 1A% 4 g Ageea®e 4 e Agetes®e + g Agetade. (10.1.5)

The constants ¢y, co, c3 and ¢4 depend on the four initial conditions.

10.1.2 The eigenvalues
Let’s examine the eigenvalues of the system of equations. Each eigenvalue can be either real and complex.

If one of the eigenvalues is complex, then its complex conjugate is also an eigenvalue. Complex eigenvalues
therefore always come in pairs.
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A mode of vibration is a characteristic way in which an object (our aircraft) can vibrate. The number
of modes depends on the eigenvalues. In fact, it is equal to the number of different eigenvalues. (When
performing the counting, a pair of complex conjugate eigenvalues is counted as one.) For example, an
aircraft with two real eigenvalues and two complex eigenvalues has three modes of vibration.

The eigenvalues A\, are very important for the stability of the system. To examine stability, we look at
the limit
lim cjAqee1’e + coAge™2® 4 c3Agees® + cyAyeteade, (10.1.6)

Se—00

If only one of the eigenvalues has a positive real part, then this limit will diverge. This means that our
aircraft is unstable. If, however, all eigenvalues have negative real parts, then the system is stable.

10.1.3 Real eigenvalue properties

We can derive some interesting properties from the eigenvalues. First, let’s examine a real eigenvalue
Xe. This eigenvalue has its own mode of vibration x = Ae*<*c. The half time T: is defined as the
time it takes to reduce the amplitude of the motion to half of its former magnitudé. In other words,
x(t+Ty) = 1x(t). Solving this equation will give

T, — ln% c .
2 Ae V

(10.1.7)

Similarly, we define the time constant 7 as the time it takes for the amplitude to become 1/e of its former
magnitude. Solving x(t 4+ 7) = 1x(t) gives
1 ¢
T=——=. 10.1.8
W% ( )
These two parameters of course only exist if ). is negative. If it is positive, then the magnitude will only
grow. In this case, the doubling time 75 is an important parameter. It is given by T5 = —T% .

10.1.4 Complex eigenvalue properties

Now let’s examine a complex eigenvalue pair. We can write it as A, , = & £ 74, where i = y/—1 is the
complex number. This eigenvalue will cause an oscillation. The period and frequency of the oscillation
only depend on 7.. In fact, the period P, the frequency f and the angular frequency w,, are given
by

21 ¢ 1 NV 27 \%

e V F=p=orz ™md wn=Tp=ng (10.1.9)
The damping of this oscillation is caused by the real part £&.. Again, the half time T% is defined as the
time it takes for the amplitude to reduce to half its size. It is still given by

ln%é

eV

T (10.1.10)

Nl=

Another important parameter is the logarithmic decrement ¢. It is defined as the natural logarithm
of the ratio of the magnitude of two successive peaks. In other words, it is defined as

Ec % (t+P)
§=1In <6V> VP (10.1.11)
65C?t C

Finally, there are the damping ratio ¢ and the undamped angular frequency wy. They are defined
such that _
c

)‘01,2 = (_CWO + iwom) V (10.1.12)
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Solving for ¢ and wqy will give
_gc

174
and wo = /&2 +n2—. 10.1.13

(=

10.1.5 Getting stable eigenvalues

Let’s take a look at the characteristic equation (equation (10.1.4)). We usually set up the equation, such
that A > 0. To obtain four eigenvalues with negative real parts, we must have

B>0, C>0, D>0 and E >0. (10.1.14)
But these aren’t the only conditions to ensure that we have stable eigenvalues. We must also have
R = BCD — AD? — B*E > 0. (10.1.15)

These criteria are known as the Routh-Hurwitz Stability Criteria. The coefficient R is called
Routh’s discriminant. These criteria hold for both the symmetric and the asymmetric modes of
vibration.

10.2 The symmetric modes of vibration

10.2.1 Example eigenvalues

Let’s suppose we know all the parameters in the matrix equation that was described earlier. In this case,
we can find the four eigenvalues. An example solution of these eigenvalues is given by

Aer, = —0.0440.04i  and A, = —0.0003 % 0.006i. (10.2.1)

Of course these values will be different for different aircraft. But most types of aircraft, having the
standard wing-fuselage-tailplane set-up, will have similar eigenvalues.

Let’s study these eigenvalues. There are two pairs of complex conjugate eigenvalues. Both pairs of
eigenvalues have negative real parts. This means that the aircraft is stable. Since there are only two
pairs of complex conjugate eigenvalues, there are two modes of vibration. We will now examine these
modes.

10.2.2 The short period oscillation

Let’s look at the first pair of eigenvalues. It has a relatively big real part £ The damping is therefore
big. The complex part 7. is relatively big as well. So the frequency is high. In other words, we have a
highly damped high-frequency oscillation. This motion is known as the short period oscillation.

Let’s take a look at what actually happens in the aircraft. We start the short period oscillation by
applying a step input to the elevator deflection. (We deflect it, and keep that deflection.) We can, for
example, deflect it upward. This causes the lift on the horizontal tailplane to decrease. This, in turn,
causes the pitch rate to increase. An increase in pitch rate will, however, increase the effective angle of
attack of the horizontal tailplane. This then reduces the pitch rate. And the whole cycle starts over again.
However, the oscillation is highly damped. After less than one period, the effects are hardly noticable
anymore.

Now let’s try to derive some equations for the short period motion. The short period motion is rather
fast. So we assume the aircraft hasn’t had time yet to change its velocity in X or Z direction. This
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means that @ = 0 and v = 0. Therefore a = 0. This reduces the equations of motion to

« 0
=11, 10.2.2
51 1) 02

We can now find the eigenvalues for this matrix. This will still give us a rather complicated equation. If
we neglect Cz, and Cz,_, then this complicated equation reduces to

—B +iV4AC — B?

Cz, + (OZa — 2te) Ae 2pe + OZq
Cry + Crg Ae Chny — Q,MCK%,-)\C

Aoy = 5 A (10.2.3)
In this equation, the coefficients A, B and C' are given by
A=4p2Ky, B=—-2u,(KyCyz, +Cny +Cp,) and C=Cgz Cp, —2p1Chn,. (10.2.4)

To have stability, we should have —% negative. We know that A is positive. This means that B has to
be positive as well.

10.2.3 The phugoid

Now we look at the second pair of eigenvalues. It has a small real part £., and therefore a small damping.
The complex part 7, is small as well, so the frequency is low. In other words, we have a lightly damped
low-frequency oscillation. This motion is known as the phugoid.

Again, we look at what happens with the aircraft. This time, we apply an impulse deflection on the
elevator. (We only deflect it briefly.) This will cause our pitch angle to increase. (That is, after the short
period motion has more or less damped out.) We will therefore go upward. This causes our velocity to
decrease. Because of this, the lift is reduced. Slowly, the pitch angle will decrease again, and we will go
downward. This causes the velocity to increase. This, in turn, increases the lift. The pitch angle will
again increase, and we will again go upward.

Again, we will try to derive some relations for the phugoid. In the phugoid, the angle of attack « is
approximately constant. (v and 6 do vary a lot though.) So we have & = 0 and & = 0. (Remember that
we're discussing deviations from the initial position.) Since the oscillation is very slow, we also assume
that ¢ = 0. If we also neglect the terms C’Zq and Cyx,, we will find that we again have

—B £+ iV4AC — B?

Aesq = oA (10.2.5)
However, now the coefficients are given by
A=—4p? B=2u.Cx, and C=-CzCg,. (10.2.6)

We can apply the approximations Cx, = —2Cp, Cz, = —C}p, and Cz, = —2C. This would then give
us the three parameters

vV [C? 2C 2 2 Vv
w=V\ 85 (V20 g po 2 TV (02
c\l2uz V 2 Cp woy/1—¢2  wo g

Note that, in the above equation for P, we have used the fact that the damping ¢ is small. Although the
above equations are only approximations, they can serve as quite handy tools in verifying your results.
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10.3 The asymmetric modes of vibration

10.3.1 Example eigenvalues

We have just examined the symmetric equations of motion. Of course, we can do the same for the
asymmetric equations of motion. These equations of motion are

Cy[j + (CYB — Q/Lb)Db (o)) Cyp CYT — 4y Ié] 0
0 -ip 1 0 0
2 , ol = (10.3.1)
Cl, 0 C, —4mK5 Dy  C), +4uKxzDy | | 337 0
Chup + Cry Dy 0 Cn, +4mKxzDy Co, —4mKiDy | [2£] [0

Examining them goes in more or less the same way as for the symmetric case. There is, however, one
important difference. Since we are examining the asymmetric case, we don’t use the chord ¢ but we use
the wing span b. The eigenvalues are thus also denoted as )\,. Example eigenvalues for an aircraft are

A, = —0.4, A, =001  and Ay, , = —0.04 + 0.44. (10.3.2)

You might be surprised that these eigenvalues are a lot bigger than the symmetric eigenvalues. This is
not very important. It’s only the case, because they are based on b, instead of on ¢. And naturally, b is
a lot bigger than c.

Let’s examine the eigenvalues. There are two real eigenvalues and one pair of complex conjugate eigenval-
ues. The aircraft thus has three modes of vibration. You might also have noticed that there is a positive
eigenvalue. The aircraft is thus unstable. The eigenvalue is, however, very small. This means that the
aircraft state will only diverge very slowly. The pilot will have plenty of time to do something about it.
So you don’t have to worry: flying is still safe.

10.3.2 The aperiodic roll

The motion corresponding to A, is called the aperiodic roll. The eigenvalue is very negative. This
motion is therefore highly damped.

The aperiodic roll is induced by applying a step input to the aileron. When this happens, the aircraft
will start rolling. Let’s suppose it rolls to the right. The right wing then goes down. This means that the
right wing will get a higher effective angle of attack. The lift of this wing thus increases. The opposite
happens for the left wing: its lift decreases. This lift difference causes a moment opposite to the rolling
motion. In other words, the motion is damped out. The roll rate p will converge rather quickly to a
constant value.

The aperiodic roll is a very fast motion. So there is no time for sideslip or yaw effects to appear. So
we can assume that, during an aperiodic roll motion, we have 8 = r = 0. This reduces the equations of
motion to just one equation, being

b
(Cr, = 4K Dy) 37 = 0. (10.3.3)
It directly follows that the corresponding eigenvalue is given by
Ci
Ap, = L. 10.3.4
" 4K ( )

10.3.3 The spiral motion

The motion corresponding to Ay, is called the spiral motion. The eigenvalue is positive. So the motion
is unstable. However, the eigenvalue is very small. This means that divergence will occur only very
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slowly. We thus say that the motion is marginally unstable. (For some aircraft, this value is slightly
negative. Such aircraft are marginally stable.)

The spiral motion is induced by an initial roll angle. (An angle of 10° is sufficient.) This causes the lift
vector to be tilted. The horizontal component of the lift will cause the aircraft to make a turn. In the
meanwhile, the vertical component of the lift vector has slightly decreased. This causes the aircraft to
lose altitude. Combining these two facts will mean that the aircraft will perform a spiral motion.

If the eigenvalue Ay, is positive, then the roll angle of the aircraft will slowly increase. The spiral motion
will therefore get worse. After a couple of minutes, the roll angle might have increased to 50°. This
phenomenon is, however, not dangerous. The pilot will have plenty of time to react. It is also very easy
to pull the aircraft out of a spiral motion.

Let’s try to derive an equation for A\,,. The spiral motion is a very slow motion. We thus neglect the
derivatives of 3, p and r. Also, the coefficients Cy, and Cy, are neglected. After working out some
equations, we can eventually find that

20 (C’lﬁC’nT - C’nEC’lT)

Ay = : 10.3.5
27 0, (Cy,Cr, +4uC) — Cr, (Cy, G, + 4,Cl) ( )

The denominator of this relation is usually negative. We say we have spiral stability if A\;, < 0. This
is thus the case if

ClﬁCnr - CnﬁClT > 0. (10.3.6)

You might remember that we’ve seen this equation before.

10.3.4 The Dutch roll

The pair of eigenvalues Ay, , has a slightly low damping and a slightly high frequency. In the mode of
vibration corresponding to these eigenvalues, the aircraft alternately performs a yawing and a rolling
motion. The mode of vibration is called the Dutch roll.

Let’s take a look at what actually happens with the aircraft. To initiate the Dutch roll, an impulse input
is applied to the rudder. This causes the aircraft to yaw. Let’s suppose the aircraft yaws to the right.
The lift on the left wing then increases, while the lift on the right wing decreases. This moment causes
the aircraft to roll to the right.

When the aircraft is rolling to the right, then the lift vector of the right wing is tilted forward. Similarly,
the left wing will have a lift vector that is tilted backward. This causes the aircraft to yaw to the left.
(This effect is still called adverse yaw.) In this way, roll and yaw alternate each other. It is important to
remember that roll and yaw are alternately present. When the roll rate is at a maximum, the yaw rate
is approximately zero, and vice verse.

The Dutch roll is not very comfortable for passenger. To increase passenger comfort, a yaw damper is
used. This is an automatic system, which uses rudder/aileron deflections to reduce the effects of the
Dutch roll.

Let’s try to find a relation for Ag, ,. This is rather hard, since both roll and yaw are present. However,
experience has shown that we still get slightly accurate results, if we neglect the rolling part of the motion.
We thus assume that ¢ = p = 0. This reduces the system of equations to a 2 x 2 matrix. From it, we

can again find that
—B + iW/4AC — B?

Abs s = 5 A (10.3.7)
However, this time the coefficients A, B and C are given by
A=8ulK%, B =24, (Cp, +2K;Cy,) and C =4,Cp, + Cy,Ch, . (10.3.8)

And that concludes our discussion on the modes of vibration.
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10.3.5 Stability criteria

From the characteristic equation (equarion (10.1.4)) we can see which eigenmotions are stable. We have
seen earlier that, if A, B, C, D, E and R are all positive, then all eigenmotions are stable. In other

words, we have spiral stability and a convergent Dutch roll.

However, if some of the coefficients become negative, then there will be unstable eigenmotions. If E < 0,
then we have spiral instability. Similarly, if R < 0, then we will have a divergent Dutch roll. So, to ensure
stability, we’d best keep the coefficient of the characteristic equation positive.
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